
Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 2

Due: Friday, Sep 18, 2020 at 5pm
Turning in your solutions: Upload a single pdf file (typed or neatly handwritten) to

canvas.
Collaboration policy: You may work individually or together in small groups but

should write up your solutions individually.
Strongly recommended collaboration approach: We recommend that you find 1-2

other people to work with. You can use psetpartners.mit.edu to find partners if you don’t
already know people in the class.

Then for each problem, attempt it first on your own, and work until you get stuck. When
you meet with the group, discuss each problem even if you’ve already solved it. If the whole
group is stuck then we can answer questions on Piazza, in office hours, and can also schedule
meetings at other times.

1. Quantum channels

(a) Show that any linear operator N from L(Cd1) to L(Cd2) can be written in the
form N (X) =

∑
aAaXB†

a for some matrices Aa, Ba. What dimension are these
matrices?

(b) Non-uniqueness of Kraus operators. When we write a channel in the
Stinespring representation as N (ρ) = trE V ρV †, the outcome is the same if we
perform a further isometry on system E before tracing it out. What effect does
this have on the Kraus operators?

(c) Adjoint. Define the Hilbert-Schmidt inner product between two matrices to be

⟨X, Y ⟩ := tr
[
X†Y

]
. (1)

The adjoint of a superoperator T ∈ L(L(A), L(B)) with respect to this inner
product is defined by the expression

⟨X,T (Y )⟩ = ⟨T †(X), Y ⟩. (2)

This is also known as the Heisenberg picture for quantum operations.

i. If T (ρ) =
∑

i∈[k] AiρA
†
i then what are the Kraus operators of T †?

ii. trC is a quantum channel from B ⊗ C to B. What is tr†C?

iii. Write down a quantum operation T that is not unitary and that satisfies
T = T †.
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2. Types. Given a sequence xn = x1, x2, . . . , xn ∈ [d]n and a symbol a ∈ [d], let
N(a|xn) be the number of occurrences of a in xn. The type (or empirical probability
distribution) of xn is the distribution that results from choosing a random letter from
xn, i.e. Pxn(a) = N(a|xn)/n. Here we use Pxn to denote the type of xn. Let Pn

denote the set of all possible types of sequences in [d]n; equivalently Pn is the set
of probability distributions on [d] whose entries are integer multiples of 1/n. Let
T n
p := {xn : Pxn = p}. Note that

|T n
p | =

(
n

np

)
:=

n!

np1!np2! · · ·npd!
. (3)

(a) List the elements of P3 when d = 3.

(b) Prove the upper bound
|Pn| ≤ (n+ 1)d−1. (4)

(c) Prove that for xn ∈ T n
p ,

pn(xn) := p(x1) · · · p(xn) = 2−nH(p), (5)

where H(p) :=
∑

x p(x) log(1/p(x)).

(d) For types p, q ∈ Pn, compute pn(T n
q ) where we use the notation pn(S) to mean∑

xn∈S p
n(xn). Express your answer in terms ofH(q) andD(q∥p) =

∑
x q(x) log

q(x)
p(x)

.

(e) It turns out that pn(T n
q ) takes on its maximum value (as a function of q) when

q = p. You do not need to prove this. Use this fact, along with the previous
parts, to prove that

2nH(p)

(n+ 1)d−1
≤ |T n

p | ≤ 2nH(p). (6)

(f) Pinsker’s inequality (which you can use without proof) states that

D(q∥p) ≥ 1

2 ln 2
∥p− q∥21. (7)

Combine this with the last two parts to prove that

pn(T n
q ) ≤ e−n

∥p−q∥21
2 . (8)

(g) One consequence of (8) is a weak version of a Chernoff bound. Suppose that we
have a coin with probability a of heads and probability 1− a of tails. If we flip it
n times show that the probability of ≥ nb heads for b > a decreases exponentially
with n.

(h) We can also use types to define a sharper version of typical sets. Define

T n
p,δ =

⋃
q:∥p−q∥1≤δ

T n
q . (9)

Prove that 1− pn(T n
p,δ) is exponentially small for fixed p and fixed δ > 0.

3. Gibbs distributions In this problem we define entropy with log base-e, i.e. ln. Also
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let exp(x) := ex.

(a) Consider a classical system whose state lies in the set Ω. For simplicity assume
that Ω is finite. The energy is defined by function E : Ω → R. The Gibbs
distribution at temperature T is

gT (x) :=
e−E(x)/T∑

x′∈Ω e−E(x′)/T
. (10)

For given E, T , define the free energy of a probability distribution p by

F (p) := E
x∼p

[E(x)]− TH(p) =
∑
x∈Ω

p(x)[E(x) + T ln(p(x))] (11)

Prove that gT is a local minimum of the free energy. There are a few different
ways to do this; probably calculus is the most straightforward.

(b) Now repeat the above exercise quantumly. Let H be a finite-dimensional Hermi-
tian matrix. Define the Gibbs state

γT :=
e−H/T

tr[e−H/T ]
(12)

and the free energy
F (ρ) := tr[Hρ]− TS(ρ). (13)

Prove that γT minimizes F .

(c) Is F concave, convex or neither? Does this tell us anything about whether gT and
γT are global minima of F?

(d) For any state ρ, interpret F (ρ) − F (γT ) as a relative entropy. Use this to derive
a robust version of (c), showing that even approximate minimizers of F are close
to γT . You may use without proof the quantum Pinsker inequality D(ρ∥σ) ≥
1
2
∥ρ− σ∥21; note that this formulation uses entropies defined with the natural log

(D(ρ∥σ) = tr ρ[ln(ρ) − ln(σ)]), and that the usual relative entropy has an extra
factor of 1

ln 2
on the RHS.
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