
Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 4
Due: Friday, Oct 2, 2020 at 5pm on canvas.

1. Compression with side information.

(a) Conditionally typical set. For a probability distribution pXY define Jn
p,δ to be the

jointly typical set: formally Jn
p,δ := T n

p,δ ∩ (T n
pX ,δ × T n

pY ,δ). Given yn, define the
conditionally typical set J(yn) := Jn

p,δ(y
n) by

J(yn) =
{
xn ∈ Xn : (xn, yn) ∈ Jn

p,δ

}
. (1)

Observe that if yn ̸∈ T n
pY ,δ then J(yn) is empty. If yn ∈ T n

pY ,δ then what bounds
can you place on pn(xn|yn) for xn ∈ J(yn)? Prove that

|J(yn)| ≤ exp(n(H(X|Y ) + 2δ)). (2)

(b) Let (Xn, Y n) ∼ pnXY , i.e. each (Xi, Yi) is drawn independently from pXY . Suppose
that Alice knows Xn and Y n, Bob holds Y n and Alice wishes to transmit Xn to
Bob. Shannon’s noiseless coding theorem tells her how to do this using ≈ nH(X)
bits, but this would not take advantage of the correlations between Xn and Y n.
Show that she can transmit Xn to Bob using n(H(X|Y ) + δ) bits and error ϵ,
with ϵ, δ → 0 as n → ∞. (Note: the δ in (a) might not be the same δ as the one
here.)

(c) Now suppose that Alice knows only Xn and Bob knows Y n. This is significantly
more challenging than the situation in (b). Suppose that Alice uses a random
codebook as in Shannon’s noisy coding theorem. To compress to rate R, Alice
uses a random function E : Xn → [2nR] := {1, 2, . . . , 2nR}, meaning that each
E(xn) is chosen independently and uniformly from [2nR]. As in the channel coding
theorem, E is chosen randomly and then fixed and can be assumed to be known
by both parties.

Given message m, Bob decodes by choosing the unique xn such that E(xn) = m
and (xn, Y n) ∈ J , i.e. in the set E−1(m) ∩ J(Y n). If this xn either doesn’t exist
or isn’t unique, then he declares failure. Let WRONG be the event where

E−1(m) ∩ J(Y n) (3)

contains a string xn that is not equal to the correct string Xn. Prove that
pn(WRONG) → 0 if R > H(X|Y ) + 3δ as n → ∞.

(d) What other errors are possible? By bounding their probabilities show that the
coding strategy in (c) can work with error approaching 0 as n → ∞ for any
R > H(X|Y ).

2. Feedback-assisted capacity The proof in lecture of Shannon’s noisy coding theorem
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did not allow Bob to send messages back to Alice, an ability called “feedback.” Suppose
that after receiving each channel output Yi, Bob can noiselessly send Alice an arbitrary
message. Modify the proof in lecture to show that the same converse still holds. You
do not need to repeat the parts of the proof that are unchanged. As a hint, try to
show that I(M ;Y n) ≤ H(Y n)−

∑n
i=1H(Yi|Xi).

3. Entanglement-assisted capacity For classical channels, shared randomness does
not help the capacity. One way to see this is that feedback can be used to share
randomness, and feedback does not help the capacity. But for quantum channels, we
know that entanglement between sender and receiver can improve the classical capacity,
as seen in the example of super-dense coding. In fact, free entanglement dramatically
simplifies the quantum capacity. Let CE(N ) denote the asymptotic rate that N can
send classical bits when assisted by unlimited EPR pairs between sender and receiver.
It turns out that

CE(N ) = max
ρ

I(A : B)τ (4)

where ρ is maximized over all density matrices on A, ϕρ
AA′ is a purification of ρ, and

τAB = (idA ⊗NA′→B)(ϕ
ρ
AA′) (5)

A

τAB
|ϕρ⟩A′A

A′ N B

(a) Consider the special case in which the maximum in (4) is achieved by ρ = I/d,
where d = |A|. Define the generalized Paulis (also called Weyl-Heisenberg opera-
tors) by

σxy :=
d−1∑
z=0

ωzy |z + x⟩ ⟨z| , (6)

where x, y ∈ {0, 1, . . . , d− 1}, z + x is defined mod d and ω := e2πi/d. Show that

E(M) :=
1

d2

∑
x,y

σx,yMσ†
x,y =

I

d
tr[M ], (7)

for any matrix M .

Consider the following coding scheme for Alice. She chooses x, y uniformly ran-
domly, applies σxy to her half of an entangled state

|Φ⟩A′B′ :=
1√
d

d∑
i=1

|i⟩A′ ⊗ |i⟩B′ (8)
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|Φ⟩A′B′ and then sends system A′ through the channel. We can express the re-
sulting ensemble as a single state with system X containing Alice’s encoding and
systems B and B′ representing Bob’s channel output and piece of the shared
entanglement. This is depicted in the following circuit diagram.

xy X

ΘXBB′
A′ σxy N

|Φ⟩A′B′ B

B′ B′

ΩXA′B′

ΩXA′B′ :=
1

d2

∑
xy

|xy⟩⟨xy|X ⊗ (σxy ⊗ I)ΦA′B′(σxy ⊗ I)† (9)

ΘXBB′ := (NA′→B ⊗ idB′X)(Ω) (10)

Compute I(X : BB′)Θ in terms of I(A : B)τ . Using the HSW theorem, what can
you then conclude about CE? [Hint: Recall that (X ⊗ I) |Φ⟩ = (I ⊗XT ) |Φ⟩.]

(b) [Optional.] Assume now that (4) has been shown to be true. Prove that the
capacity is additive, i.e. that

CE(N1 ⊗N2) = CE(N1) + CE(N2). (11)
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