
Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 5

Due: Friday, Oct 9, 2020 at 5pm on canvas.

1. Entanglement-assisted quantum capacity.

(a) Quantum capacity. Denote the entanglement-assisted capacity of a quantum chan-
nel for sending qubits (resp. cbits) by QE (resp. CE). Relate QE to CE using
teleportation and super-dense coding.

(b) Classical channels. The entanglement-assisted capacity theorem states that CE(N ) =
maxτ I(A : B)τ (see pset 4 for definition of τ). Consider the special case of a clas-
sical channel N (ρ) :=

∑
x,y ⟨x| ρ |x⟩N(y|x) |y⟩⟨y| and show that CE(N ) = C(N).

In other words, show that entanglement doesn’t increase the capacity of classical
channels, and that Shannon’s noisy coding theorem can recovered as a special
case of the entanglement-assisted capacity theorem.

(c) Input concavity. The formula for CE from pset 4 can be expressed as

CE = max
ρA′

CE(N , ρ), (1)

where CE(N , ρ) := I(A : B)τ where τAB = (idA ⊗NA′→B)(ϕ
ρ
AA′). Show that

CE(N , ρ) is independent of the choice of purification ϕρ. Show that CE(N , ρ) is
concave in the input ρ. [Hint: try purifying

∑
x p(x) |x⟩ ⟨x| ⊗ ϕρx .]

(d) Depolarizing channel. Let Dd
p (abbreviated D) denote the depolarizing channel

on d dimensions with depolarization probability p, defined as

Dd
p(ρ) = (1− p)ρ+ p

I

d
, (2)

for ρ a d-dimensional density matrix. Observe that D(UρU †) = UD(ρ)U † for any
unitary U . Use this property and the input concavity property of CE to show
that CE(Dd

p, ρ) is maximized for ρ = I/d. Calculate CE(Dd
p, I/d).

(e) Enhancement from entanglement. The classical capacity of the depolarizing
channel C(D) can be shown to be maximized by applying the HSW theorem to
the ensemble where each of the basis states |1⟩ , . . . , |d⟩ appears with probability
1/d. Calculate C(Dd

p). What is the ratio CE(D)/C(D) in the limits p → 0 and
p → 1 as a function of d?
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2. Relative entropy and the matrix multiplicative weight method.
In this problem we will see how quantum relative entropy can be a useful tool in classical
optimization algorithms that have applications in machine learning. For convenience,
take log to be base-e in this problem. Some formulas that may be helpful:

ln(A+B) = ln(A) +

∫ ∞

0

dz (A+ zI)−1B(A+B + zI)−1 (3)

d

dt
eA(t) =

∫ 1

0

ds esA
dA

dt
e(1−s)A (4)

(a) Variants of gradient descent. Consider the problem of minimizing a function
f : Rd → R. We will discuss three algorithms for this problem.

i. Proximal gradient descent. The idea of gradient descent is to start with a
point x0 and then in the tth step, move from xt in the direction of −∇f(xt),
i.e. −1 times the gradient of f evaluated at xt. At the same time, we don’t
want to move too far from xt. These goals (moving in the direction of −∇f
but not too far from xt) compete and we choose xt+1 according to

xt+1 = argmin
xt+1

η⟨xt+1 − xt,∇f(xt)⟩+
1

2
∥xt+1 − xt∥22, (5)

for some parameter η > 0. Solve for xt+1 in terms of xt, η, and f . Does this
correspond to a step in the direction of −∇f?

ii. Mirror descent on probabilities. Let ∆d be the set of probability distributions
on d items, i.e. ∆d = {x ∈ Rd : ∀i x(i) ≥ 0,

∑d
i=1 x(i) = 1}. For probability

distributions it is more natural to use the relative entropy as a distance mea-
sure instead of the ℓ2 norm. Thus the mirror descent algorithm chooses xt+1

according to

xt+1 = argmin
xt+1

η⟨xt+1 − xt,∇f(xt)⟩+D(xt+1∥xt). (6)

(The terminology “mirror descent” comes from a generalization using some-
thing known as as “mirror map” which we will not use in this pset.) Solve
for xt+1 in terms of xt, η, and f . As a hint, the update rule you find is called
the “multiplicative weights” update rule.

iii. Mirror descent on density matrices. Now let Dd denote d×d density matrices
and define f : Dd 7→ R. Note that ∇f is now a matrix, and for matrices A,B,
we define ⟨A,B⟩ := tr

[
A†B

]
. Mirror descent here corresponds to the update

rule
ρt+1 = argmin

ρt+1

η⟨ρt+1 − ρt,∇f(ρt)⟩+D(ρt+1∥ρt). (7)

Solve for ρt+1 as a function of ρt, η and f , assuming for simplicity that ρt
is full rank. As a hint, you may find the solution of problem 3(b) on pset 2
helpful.
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iv. Continuous-time matrix mirror descent. It is sometimes more convenient to
work with a continuous-time version of the map in (7). Let ρ(t) be a function
of t and for t ≥ 0 let

ρ(t+dt) = arg min
ρ(t+dt)

η dt ⟨ρ(t+dt)−ρ(t),∇f(ρ(t))⟩+D(ρ(t+dt)∥ρ(t)). (8)

Write down a differential equation for ln ρ(t). [Hint: instead of solving (8)
directly, guess the form of the answer by analogy with your answer from part
iii.]

(b) Convergence of matrix multiplicative weights. Let ρ∗ be an arbitrary density
matrix (which we will later take to be the minimizer of f).

i. Progress. Using the above differential equation show that

d

dt
D(ρ∗∥ρ(t)) = ⟨η∇f(ρ(t)), ρ∗ − ρ(t)⟩ (9)

ii. Convexity. Suppose that f is convex. Prove that

f(σ1)− f(σ2) ≤ ⟨∇f(σ1), σ1 − σ2⟩, (10)

for any density matrices σ1, σ2.

iii. Convergence. Let ρ(0) = I/d and let ρ∗ = argmin f(ρ∗).
Show that D(ρ∗∥ρ(0)) ≤ log(d). How large should T be to guarantee that

f(ρ(T )) ≤ f(ρ∗) + ϵ? You may find it helpful to show that df(ρ(t))
dt

≤ 0,
which can be done either using the fact that ρ(t) optimizes (8) or with direct
calculation.
Observe that relative entropy is used in the analysis but the final bound is
only in terms of f and the update rule you derived can also be expressed
without referencing the relative entropy. Your solution turns out to slightly
overstate the power of this algorithm since actual computers need to work in
discrete time and this introduces some additional difficulties. Still the mirror
descent algorithm is a very powerful tool because of its favorable dependence
on d.
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