
Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 6

Due: Friday, Oct 16, 2020 at 5pm on canvas.

1. Chernoff bound and Pinsker inequality. In this problem you will derive the
quantum Pinsker inequality and explore some applications.

The Pinsker inequality is

D(ρ∥σ) ≥ 1

2 ln 2
∥ρ− σ∥21. (1)

An important special case is for classical distributions over bits, where the Pinsker
inequality implies

D
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p+ ϵ

1− p− ϵ
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1− p

))
≥ 2

ln 2
ϵ2. (2)

As you saw on an earlier pset, the Pinsker inequality can also be related to the Chernoff
bound, which is a way of showing that sums of many independent random variables are
exponentially unlikely to be far from their mean. One version of this bound states that
if X1, . . . , Xn are i.i.d. random variables such that Pr[Xi = 1] = p and Pr[Xi = 0] =
1− p, then

Pr

(
1

n

n∑
i=1

Xi ≥ p+ ϵ

)
≤ e−2nϵ2 . (3)

Derivations of (2) and (3) (not needed for the rest of the problem) can be found on
wikipedia, and you may take these equations as given.

(a) Prove (1). There are two possible routes. One is to use (3) and the quantum
Stein’s Lemma. Another is to use the monotonicity of relative entropy and (2).
Pick one of these, or come up with another.

(b) The Pinsker inequality can be used to derive approximate versions of various
entropic conditions. Prove the following:

i. If S(ρ) ≤ ϵ then ρ is close in trace distance to a pure state, where “close”
means the distance goes to 0 as ϵ → 0. [Hint: let ρ =

∑
i λiψi for λ1 ≥ λ2 ≥

· · · and show D(ψ1∥ρ) ≤ S(ρ).]

ii. If I(A;B)ρ ≤ ϵ then ρAB ≈ ρA ⊗ ρB where again ≈ means close in trace
distance. [Hint: show I(A;B) = D(ρAB∥ρA ⊗ ρB).]

iii. For this last part, there is nothing to turn in. If |H(A|B)| ≤ ϵ then there is no
simple structural statement we can make (in the quantum case). Think about
why this is true. We will later see that I(A;B|C) ≤ ϵ implies a structural
property about quantum states but this is very far from obvious.
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https://canvas.mit.edu/courses/5605/assignments/65278
https://en.wikipedia.org/wiki/Chernoff_bound
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2. Remote state preparation In remote state preparation (RSP), Alice has a classical
description of a state |ψ⟩ (denoted “ψ”) and by using classical communication and
entanglement, they end with Bob holding |ψ⟩. This can be achieved by teleportation
using 2 cbits and 1 ebit per qubit of |ψ⟩ but asympototically this communication cost
can be reduced nearly by a factor of 2.

(a) Equatorial states. We say that a single-qubit state |ψ⟩ is “equatorial” if it lies on
the equator of the Bloch sphere, i.e. if there exists ϕ such that

|ψ⟩ = |0⟩+ eiϕ |1⟩√
2

. (4)

Show that ψ + ZψZ = I. Use this to construct a protocol in which

• Alice and Bob begin with the state |Φ2⟩ = 1√
2
(|00⟩+ |11⟩) (1 ebit).

• Alice performs a two-outcome measurement with outcomes {M0,M1} and
obtains outcome b ∈ {0, 1}.

• Alice transmits b to Bob using 1 cbit.

• Bob performs the correction Ub and obtains the state |ψ⟩.
Find M0,M1, U0, U1. M0,M1 should depend on ψ but U0, U1 shouldn’t; explain
why this is true. (Hint: M0 = ψ,M1 = ZψZ is not quite right but it is close.)

(b) Now suppose |ψ⟩ is an n-qubit state. Suppose that

| ⟨z|ψ⟩ |2 = 2−n ∀z ∈ {0, 1}n. (5)

Show how a modification of the above protocol can be used to perform RSP for
all states satisfying (5). This should be a single protocol in which Alice knows
the identity of a state |ψ⟩ satisfying (5) but Bob does not. It should use n cbits
and n ebits.

(c) It turns out there exist large subspaces containing only states that approximately
satisfy (5), and that this can be used to construct an RSP protocol for an arbitrary
high-dimensional state. However, there is a more direct argument that can yield
RSP for arbitrary states. Let S(Cd) denote the unit vectors in Cd. If U1, . . . , Un

are d× d unitaries then we say they have the ϵ-randomizing property if,

∀ |ψ⟩ ∈ S(Cd),

∥∥∥∥∥ 1n
n∑

i=1

UiψU
†
i −

I

d

∥∥∥∥∥
∞

≤ ϵ

d
. (6)

We saw earlier that the generalized Paulis are a set of size n = d2 that are
ϵ = 0-randomizing. It turns out that for ϵ > 0, ϵ-randomizing sets exist of size
n = O(d/ϵ2).

Show that given an ϵ-randomizing set of size n in d dimensions, there exists
an RSP protocol for d dimensional states that consumes one copy of the state
|Φd⟩ := 1√

d

∑d
i=1 |i⟩A ⊗ |i⟩B, uses log(n) cbits, and incurs (trace distance) error

O(ϵ). What is the asymptotic cbit cost per qubit if we use (a) the generalized
Paulis; or (b) a set with n = O(d/ϵ2)?
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https://arxiv.org/abs/quant-ph/0307100

