
Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 7

Due: Friday, Oct 23, 2020 at 5pm on canvas.

1. PPT test and data hiding For a bipartite state ρAB =
∑

ijkl(ρAB)ijkl |i⟩⟨j| ⊗ |k⟩⟨l|
define the partial transpose

ρΓ := (id⊗T )(ρ) =
∑
ijkl

(ρAB)ijkl |i⟩⟨j| ⊗ |l⟩⟨k| (1)

We say that ρ is PPT if it has Positive [semi-definite] Partial Transpose, i.e. if ρΓ ≥ 0.

(a) Show that Sep ⊆ PPT, i.e. that for any separable σ we have σΓ ≥ 0. Since the
PPT condition can be checked efficiently, we can sometimes use the set PPT as
an approximation for the set Sep.

(b) The transpose is a basis-dependent operation. However, show that the set PPT
is invariant under local unitaries, i.e. if ρ ∈ PPT then (U ⊗ V )ρ(U ⊗ V )† ∈ PPT
as well. (You will not need it here but your proof should work even if U, V are
not unitary.)

(c) Show that for pure state ψ = |ψ⟩⟨ψ|, ψ ∈ PPT if and only if ψ ∈ Sep, i.e. if |ψ⟩ is
a product state. (Hint: use (b) to rotate |ψ⟩ into its Schmidt basis, then observe
that ψΓ can be broken into 2× 2 blocks. You may also want to use the definition
of a PSD matrix where if M is PSD, then ⟨ψ|M |ψ⟩ > 0 ∀ |ψ⟩.)

(d) Define the projectors Π± = (I ± SWAP)/2 on Cd ⊗ Cd. These are called the
symmetric and antisymmetric projectors respectively. Verify that trΠ± = d(d ±
1)/2. Define the Werner state

Wλ := λ
Π+

d(d+ 1)/2
+ (1− λ)

Π−

d(d− 1)/2
(2)

Calculate SWAPΓ and W Γ
λ . For which values of λ is Wλ ∈ PPT?

(e) We say a channel NA′→B is PPT if its Jamiolkowski state ω(N ) is in PPT. For
what values of p, d is the depolarizing channel Dd

p(ρ) = (1− p)ρ+ p I
d
PPT?

(f) Show that if ρ is a PPT state and |Φd⟩ = d−1/2
∑d

i=1 |i⟩ ⊗ |i⟩ then tr[Φdρ] ≤ 1/d.
Along the way you may find it helpful to show that tr

[
AΓBΓ

]
= tr[AB]. Recall

also the bound tr[AB] ≤ ∥A∥1∥B∥∞.
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(g) [Optional] Consider now the problem of distinguishing the Werner states W0 and
W1 using LOCC (local operations and classical communication). The measure-
ment consists of operators {M0,M1} such that 0 ≤M0, 0 ≤M1 andM0+M1 = I.
It turns out that if {M0,M1} can be implemented using LOCC then it should ad-
ditionally satisfy MΓ

0 ≥ 0 and MΓ
1 ≥ 0.

We can further restrict the form of M0,M1 using symmetry. Show that SWAP
commutes with U⊗U for all U ∈ U(d) and therefore thatWλ does as well. It turns
out that this allows us to show that M0,M1 are (without loss of generality) linear
combinations of I and SWAP, i.e. M0 = aI+b SWAP andM1 = (1−a)I−b SWAP
for a, b ∈ R. (Both “it turns out” facts in this problem are non-trivial but will be
discussed in lecture.) Define the bias of the measurement to be

δ :=
trM0W0 + trM1W1 − 1

2
. (3)

Show that δ ≤ O(1/d) for LOCC measurements but δ = 1 is possible for unre-
stricted measurements. Show also that δ = O(1/d) is achievable by measuring
both systems in the basis {|1⟩ , . . . , |d⟩} and checking whether the answers agree.
As a result we call the Werner states data hiding states since they can be used to
hide a bit in a way that is concealed from LOCC measurements but accessible to
general measurements.

2. Entanglement distillation with CSS codes

(a) First we consider the problem of information reconciliation. Suppose that Alice
has a string x ∈ Zn

2 and Bob has a string y such that x is uniformly distributed
on Zn

2 and each yi is equal to xi with probability 1 − p and equal to xi + 1 with
probability p. In other words y = x+ e where each ei is an independent Bernoulli
random variable with expectation p. This is the output we would get from sending
x through n uses of a binary symmetric channel.

The goal of information reconciliation is to exchange messages such that Alice
and Bob end with shared strings x′, y′ that are equal to each other with high
probability and are secret to any eavesdropper. To this end, suppose that Alice
chooses a random matrix A ∈ Zk×n

2 for some k < n, subject to the constraint that
the k rows are linearly independent. Then she sends A and Ax to Bob through a
public channel. Show that conditioned on A and Ax, Alice’s state has n− k bits
of entropy. (Hint: it should be uniformly distributed over a dimension-n−k affine
subspace of Zn

2 . An affine space is a set of the form x0+S = {x0+x : x ∈ S} where
S is a linear subspace of Zn

2 .) Next show that if k = nR for some R > H2(p) then
Bob can use this message to determine the exact value of e with high probability.
Explain how this gives rise to a secrecy distillation protocol that can extract secret
bits at rate asymptotically equal to 1−H2(p).

(b) Now we turn to entanglement. Suppose that Alice generates n copies of |Φ2⟩ and
sends half of each copy through the channel NX , defined as

NX(ρ) = (1− p)ρ+ pXρX. (4)
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Thus Alice and Bob share ρ⊗n where ρ = (id⊗NX)(Φ2). As in the classical case,
Alice generates a random matrix A ∈ Zk×n

2 (uniformly random subject to the
constraint that rows are linearly independent) and sends this to Bob through a
classical channel. For each row Ai = (Ai,1, . . . , Ai,n) Alice measures the observable

ZAi := Z
Ai,1

1 Z
Ai,2

2 · · ·ZAi,n
n (5)

obtaining outcome (−1)si for si ∈ {0, 1}. She also sends the outcomes s1, . . . , sk
to Bob. Then Bob also measures ZA1 , . . . , ZAk . Again assume k = nR for R >
H2(p). Show that the post-measurement state is close to a pure state of the form

(I ⊗Xe) |S⟩ := 1√
|S|

∑
x∈S

|x, x+ e⟩ (6)

where S is a subspace of Zn
2 . How many copies of |Φ2⟩ can (I ⊗ Xe) |S⟩ be

converted into using local unitaries?

(c) Now suppose that each of n copies of |Φ2⟩ are sent first through NX and then
through NZ , defined as

NZ(ρ) = (1− p)ρ+ pZρZ. (7)

Thus Alice and Bob share ρ⊗n where ρ = (id⊗NZ ◦ NX)(Φ2). The combination
NZ ◦ NX is not exactly the same as the depolarizing channel since it results in
X with probability p, Z with probability p and Y with probability p2 but it is a
reasonable proxy for the depolarizing channel.

The entanglement distillation protocol from (b) is now modified as follows. First
Alice follows the same steps as in (b). Then she chooses another random matrix
B ∈ Zk×n

2 that is uniformly distributed subject to its rows being linearly inde-
pendent and the constraints ABT = 0. Now for each i = 1, . . . , k Alice measures
XBi , obtaining outcomes (−1)t1 , . . . , (−1)tk . She transmits B and t to Bob. Then
Bob also measures ZA1 , . . . , ZAk and XB1 , . . . , XBk . Again we assume k = nR for
R > H2(p). Show that the post-measurement state is close to a pure state of the
form (I ⊗ ZfXe) |S⟩ where e, f ∈ Zn

2 and |S⟩ is defined as in (6).
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