Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 8

Due: Friday, Nov 13, 2020 at 5pm on canvas.

1. Data hiding, continued

(a) Separable Werner states. As in the last pset, define the symmetric/antisymmetric projectors $\Pi_{\pm} = (I \pm F)/2$ on $\mathbb{C}^d \otimes \mathbb{C}^d$ (with F = SWAP) and the Werner state

$$W_{\lambda} := \lambda \frac{\Pi_{+}}{d(d+1)/2} + (1-\lambda) \frac{\Pi_{-}}{d(d-1)/2}$$
(1)

Previously we saw that W_{λ} is PPT for $\lambda \geq 1/2$, meaning that it is entangled for $\lambda < 1/2$. However, we need an additional argument to show that W_{λ} is separable for $\lambda \geq 1/2$. Prove this by giving explicit decompositions of W_{λ} into product states for all $\lambda \in [1/2, 1]$. As a hint, try computing $\mathbb{E}[(U \otimes U)(\alpha \otimes \beta)(U \otimes U)^{\dagger}]$ for pure states α, β .

- (b) Form of the optimal measurement. Suppose that we would like to distinguish $\rho_0 := W_{\lambda_0}$ and $\rho_1 := W_{\lambda_1}$. (These λ_0, λ_1 could be 0, 1 as in the last pset, or 1/2, 1 if we want to consider the problem of distinguishing separable states.) Then we perform a a 2-outcome measurement $\{M_0, M_1\}$ and seek to maximize $p_0 := \operatorname{tr} M_0 \rho_0$ and $p_1 := \operatorname{tr} M_1 \rho_1$. This is a two-objective optimization; rather than a single optimal value, there is a feasible region of possible (p_0, p_1) . Show that any feasible p_0, p_1 can be achieved by M_0, M_1 that are linear combinations of I and F. (*Hint: Do not try to determine which* (p_0, p_1) are feasible.)
- (c) **Composability.** In the last part, if λ_0, λ_1 are not 0, 1—say if we choose them to be 1/2, 1—then ρ_0, ρ_1 are not orthogonal, so we cannot distinguish the states perfectly even with collective measurements. To remedy this, let $\rho_0 = W_{\lambda_0}^{\otimes n}$ and $\rho_1 = W_{\lambda_1}^{\otimes n}$ so that $F(\rho_0, \rho_1)$ decays exponentially with n. Show that now any feasible p_0, p_1 can be achieved by M_0, M_1 that are linear combinations of the 2^n operators $I \otimes I \otimes \cdots \otimes I, I \otimes I \otimes \cdots \otimes F, \ldots F \otimes F \otimes \cdots \otimes F$.

2. Measure concentration

- (a) Let $z \in N_{\mathbb{C}}(0, 1)$, meaning z = x + iy with $x, y \in N(0, 1/2)$. For $\gamma \ge 0$, calculate $\Pr[|z|^2 \ge t]$ and the associated density $p(t) = -\frac{d}{dt} \Pr[|z|^2 \ge t]$. Use this to calculate $\mathbb{E}[e^{\lambda|z|^2}]$. Note that this becomes ∞ for large enough λ . Think about why this is but you don't need to write your answer.
- (b) Let $|\gamma\rangle \in \mathbb{C}^{d_A d_B}$ be a complex Gaussian vector with mean zero and variance such that $\mathbb{E}[|\gamma\rangle\langle\gamma|] = I/d_A d_B$. Let $|\alpha\rangle \in \mathbb{C}^{d_A}$ be a unit vector. Compute $\mathbb{E}[\exp(\lambda \operatorname{tr}[\alpha \gamma_A])]$. Show that for $0 < \epsilon \leq 1$,

$$\Pr\left[\operatorname{tr}[\alpha\gamma_A] \ge \frac{1+\epsilon}{d_A}\right] \le e^{-c_1 d_B \epsilon^2} \tag{2}$$

for some constant $c_1 > 0$. As a hint, you should find that the optimal λ is $d_A d_B (1 - (1 + \epsilon)^{-1})$. You may use without proof the fact that $\epsilon - \ln(1 + \epsilon) \geq \epsilon^2/6$.

(c) Let $|\psi\rangle \in \mathbb{C}^{d_A d_B}$ be a random unit vector. Show that ψ satisfies the same bound as (2), i.e. that

$$\Pr\left[\operatorname{tr}[\alpha\psi_A] \ge \frac{1+\epsilon}{d_A}\right] \le e^{-c_1 d_B \epsilon^2} \tag{3}$$

(d) Assume that $d_A \leq d_B$. We know from random matrix theory that $\|\gamma_A\|_{\infty} \approx (1 + \sqrt{d_A/d_B})^2/d_A$. We will use simpler arguments to achieve this bound up to the constant factor in front of $\sqrt{d_A/d_B}$. Suppose $d_B = c_2 d_A/\epsilon^2$ for some $c_2 > 0$. Show that $\|\psi_A\|_{\infty} \leq (1 + \epsilon)/d_A$ with high probability. Do this by first showing that with high probability tr $\hat{\alpha}\psi_A \leq (1 + \epsilon)/d_A$ for all $\hat{\alpha}$ in a δ -net on \mathbb{C}^d , with $\delta = 1/2$. You may want to use the fact that if tr X = 0 then tr $X\psi_A = \operatorname{tr} X(\psi_A - I/d) \leq \|X\|_1 \|\psi_A - I/d\|_{\infty}$. If you don't see how to prove this, show the bound for $d_B = c_2 d_A \log(d_A/\epsilon)/\epsilon^2$ using a $O(\epsilon/d_A)$ -net for partial credit.