
Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 8

Due: Friday, Nov 13, 2020 at 5pm on canvas.

1. Data hiding, continued

(a) Separable Werner states. As in the last pset, define the symmetric/antisymmetric
projectors Π± = (I ± F )/2 on Cd ⊗ Cd (with F = SWAP) and the Werner state

Wλ := λ
Π+

d(d+ 1)/2
+ (1− λ)

Π−

d(d− 1)/2
(1)

Previously we saw that Wλ is PPT for λ ≥ 1/2, meaning that it is entangled for
λ < 1/2. However, we need an additional argument to show that Wλ is separable
for λ ≥ 1/2. Prove this by giving explicit decompositions of Wλ into product
states for all λ ∈ [1/2, 1]. As a hint, try computing E[(U ⊗ U)(α ⊗ β)(U ⊗ U)†]
for pure states α, β.

(b) Form of the optimal measurement. Suppose that we would like to distinguish
ρ0 := Wλ0 and ρ1 := Wλ1 . (These λ0, λ1 could be 0, 1 as in the last pset, or
1/2, 1 if we want to consider the problem of distinguishing separable states.)
Then we perform a a 2-outcome measurement {M0,M1} and seek to maximize
p0 := trM0ρ0 and p1 := trM1ρ1. This is a two-objective optimization; rather
than a single optimal value, there is a feasible region of possible (p0, p1). Show
that any feasible p0, p1 can be achieved by M0,M1 that are linear combinations
of I and F . (Hint: Do not try to determine which (p0, p1) are feasible.)

(c) Composability. In the last part, if λ0, λ1 are not 0, 1—say if we choose them
to be 1/2, 1—then ρ0, ρ1 are not orthogonal, so we cannot distinguish the states
perfectly even with collective measurements. To remedy this, let ρ0 = W⊗n

λ0
and

ρ1 = W⊗n
λ1

so that F (ρ0, ρ1) decays exponentially with n. Show that now any
feasible p0, p1 can be acheived by M0,M1 that are linear combinations of the 2n

operators I ⊗ I ⊗ · · · ⊗ I, I ⊗ I ⊗ · · · ⊗ F , . . . F ⊗ F ⊗ · · · ⊗ F .
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2. Measure concentration

(a) Let z ∈ NC(0, 1), meaning z = x+ iy with x, y ∈ N(0, 1/2). For γ ≥ 0, calculate
Pr[|z|2 ≥ t] and the associated density p(t) = − d

dt
Pr[|z|2 ≥ t]. Use this to calcu-

late E[eλ|z|2 ]. Note that this becomes ∞ for large enough λ. Think about why
this is but you don’t need to write your answer.

(b) Let |γ⟩ ∈ CdAdB be a complex Gaussian vector with mean zero and variance
such that E[|γ⟩⟨γ|] = I/dAdB. Let |α⟩ ∈ CdA be a unit vector. Compute
E[exp(λ tr[αγA])]. Show that for 0 < ϵ ≤ 1,

Pr

[
tr[αγA] ≥

1 + ϵ

dA

]
≤ e−c1dBϵ2 (2)

for some constant c1 > 0. As a hint, you should find that the optimal λ is
dAdB(1− (1+ϵ)−1). You may use without proof the fact that ϵ− ln(1 + ϵ) ≥ ϵ2/6.

(c) Let |ψ⟩ ∈ CdAdB be a random unit vector. Show that ψ satisfies the same bound
as (2), i.e. that

Pr

[
tr[αψA] ≥

1 + ϵ

dA

]
≤ e−c1dBϵ2 (3)

(d) Assume that dA ≤ dB. We know from random matrix theory that ∥γA∥∞ ≈
(1 +

√
dA/dB)

2/dA. We will use simpler arguments to achieve this bound up

to the constant factor in front of
√
dA/dB. Suppose dB = c2dA/ϵ

2 for some
c2 > 0. Show that ∥ψA∥∞ ≤ (1 + ϵ)/dA with high probability. Do this by
first showing that with high probability tr α̂ψA ≤ (1 + ϵ)/dA for all α̂ in a δ-
net on Cd, with δ = 1/2. You may want to use the fact that if trX = 0 then
trXψA = trX(ψA − I/d) ≤ ∥X∥1∥ψA − I/d∥∞. If you don’t see how to prove
this, show the bound for dB = c2dA log(dA/ϵ)/ϵ

2 using a O(ϵ/dA)-net for partial
credit.
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