Q. Inf. Science 3 (8.S372 / 18.S996) - Fall 2020

Assignment 8

Due: Friday, Nov 13, 2020 at 5pm on canvas.

1. Data hiding, continued

(a) Separable Werner states. As in the last pset, define the symmetric/antisymmetric projectors $\Pi_{ \pm}=(I \pm F) / 2$ on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$ (with $F=$ SWAP) and the Werner state

$$
\begin{equation*}
W_{\lambda}:=\lambda \frac{\Pi_{+}}{d(d+1) / 2}+(1-\lambda) \frac{\Pi_{-}}{d(d-1) / 2} \tag{1}
\end{equation*}
$$

Previously we saw that W_{λ} is PPT for $\lambda \geq 1 / 2$, meaning that it is entangled for $\lambda<1 / 2$. However, we need an additional argument to show that W_{λ} is separable for $\lambda \geq 1 / 2$. Prove this by giving explicit decompositions of W_{λ} into product states for all $\lambda \in[1 / 2,1]$. As a hint, try computing $\mathbb{E}\left[(U \otimes U)(\alpha \otimes \beta)(U \otimes U)^{\dagger}\right]$ for pure states α, β.
(b) Form of the optimal measurement. Suppose that we would like to distinguish $\rho_{0}:=W_{\lambda_{0}}$ and $\rho_{1}:=W_{\lambda_{1}}$. (These λ_{0}, λ_{1} could be 0,1 as in the last pset, or $1 / 2,1$ if we want to consider the problem of distinguishing separable states.) Then we perform a a 2 -outcome measurement $\left\{M_{0}, M_{1}\right\}$ and seek to maximize $p_{0}:=\operatorname{tr} M_{0} \rho_{0}$ and $p_{1}:=\operatorname{tr} M_{1} \rho_{1}$. This is a two-objective optimization; rather than a single optimal value, there is a feasible region of possible $\left(p_{0}, p_{1}\right)$. Show that any feasible p_{0}, p_{1} can be achieved by M_{0}, M_{1} that are linear combinations of I and F. (Hint: Do not try to determine which (p_{0}, p_{1}) are feasible.)
(c) Composability. In the last part, if λ_{0}, λ_{1} are not 0,1 -say if we choose them to be $1 / 2,1$ - then ρ_{0}, ρ_{1} are not orthogonal, so we cannot distinguish the states perfectly even with collective measurements. To remedy this, let $\rho_{0}=W_{\lambda_{0}}^{\otimes n}$ and $\rho_{1}=W_{\lambda_{1}}^{\otimes n}$ so that $F\left(\rho_{0}, \rho_{1}\right)$ decays exponentially with n. Show that now any feasible p_{0}, p_{1} can be acheived by M_{0}, M_{1} that are linear combinations of the 2^{n} operators $I \otimes I \otimes \cdots \otimes I, I \otimes I \otimes \cdots \otimes F, \ldots F \otimes F \otimes \cdots \otimes F$.

2. Measure concentration

(a) Let $z \in N_{\mathbb{C}}(0,1)$, meaning $z=x+i y$ with $x, y \in N(0,1 / 2)$. For $\gamma \geq 0$, calculate $\operatorname{Pr}\left[|z|^{2} \geq t\right]$ and the associated density $p(t)=-\frac{\mathrm{d}}{\mathrm{d} t} \operatorname{Pr}\left[|z|^{2} \geq t\right]$. Use this to calculate $\mathbb{E}\left[e^{\lambda|z|^{2}}\right]$. Note that this becomes ∞ for large enough λ. Think about why this is but you don't need to write your answer.
(b) Let $|\gamma\rangle \in \mathbb{C}^{d_{A} d_{B}}$ be a complex Gaussian vector with mean zero and variance such that $\mathbb{E}[|\gamma\rangle\langle\gamma|]=I / d_{A} d_{B}$. Let $|\alpha\rangle \in \mathbb{C}^{d_{A}}$ be a unit vector. Compute $\mathbb{E}\left[\exp \left(\lambda \operatorname{tr}\left[\alpha \gamma_{A}\right]\right)\right]$. Show that for $0<\epsilon \leq 1$,

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{tr}\left[\alpha \gamma_{A}\right] \geq \frac{1+\epsilon}{d_{A}}\right] \leq e^{-c_{1} d_{B} \epsilon^{2}} \tag{2}
\end{equation*}
$$

for some constant $c_{1}>0$. As a hint, you should find that the optimal λ is $d_{A} d_{B}\left(1-(1+\epsilon)^{-1}\right)$. You may use without proof the fact that $\epsilon-\ln (1+\epsilon) \geq \epsilon^{2} / 6$.
(c) Let $|\psi\rangle \in \mathbb{C}^{d_{A} d_{B}}$ be a random unit vector. Show that ψ satisfies the same bound as (2), i.e. that

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{tr}\left[\alpha \psi_{A}\right] \geq \frac{1+\epsilon}{d_{A}}\right] \leq e^{-c_{1} d_{B} \epsilon^{2}} \tag{3}
\end{equation*}
$$

(d) Assume that $d_{A} \leq d_{B}$. We know from random matrix theory that $\left\|\gamma_{A}\right\|_{\infty} \approx$ $\left(1+\sqrt{d_{A} / d_{B}}\right)^{2} / d_{A}$. We will use simpler arguments to achieve this bound up to the constant factor in front of $\sqrt{d_{A} / d_{B}}$. Suppose $d_{B}=c_{2} d_{A} / \epsilon^{2}$ for some $c_{2}>0$. Show that $\left\|\psi_{A}\right\|_{\infty} \leq(1+\epsilon) / d_{A}$ with high probability. Do this by first showing that with high probability $\operatorname{tr} \hat{\alpha} \psi_{A} \leq(1+\epsilon) / d_{A}$ for all $\hat{\alpha}$ in a δ net on \mathbb{C}^{d}, with $\delta=1 / 2$. You may want to use the fact that if $\operatorname{tr} X=0$ then $\operatorname{tr} X \psi_{A}=\operatorname{tr} X\left(\psi_{A}-I / d\right) \leq\|X\|_{1}\left\|\psi_{A}-I / d\right\|_{\infty}$. If you don't see how to prove this, show the bound for $d_{B}=c_{2} d_{A} \log \left(d_{A} / \epsilon\right) / \epsilon^{2}$ using a $O\left(\epsilon / d_{A}\right)$-net for partial credit.

