Q. Inf. Science 3 (8.5372 / 18.5996) — Fall 2020

Assignment 8
Due: Friday, Nov 13, 2020 at 5pm on canvas.

1. Data hiding, continued

(a) Separable Werner states. As in the last pset, define the symmetric/antisymmetric
projectors Il = (I £ F)/2 on C¢ ® C? (with F = SWAP) and the Werner state

IT, I
Wa:= )\d(d T2 (1 A)d(d —1)/2 (1)
Previously we saw that W) is PPT for A > 1/2, meaning that it is entangled for
A < 1/2. However, we need an additional argument to show that W) is separable
for A > 1/2. Prove this by giving explicit decompositions of Wy into product
states for all A € [1/2,1]. As a hint, try computing E[(U @ U)(a ® 8)(U @ U)T]
for pure states «, 3.

(b) Form of the optimal measurement. Suppose that we would like to distinguish
po = Wy, and p; := W,,. (These Ao, \; could be 0,1 as in the last pset, or
1/2,1 if we want to consider the problem of distinguishing separable states.)
Then we perform a a 2-outcome measurement { My, M7} and seek to maximize
po = tr Mypy and p; := tr Myp;. This is a two-objective optimization; rather
than a single optimal value, there is a feasible region of possible (pg,p;). Show
that any feasible pg, p; can be achieved by M, M; that are linear combinations
of I and F. (Hint: Do not try to determine which (po,p1) are feasible.)

(c) Composability. In the last part, if Ao, A\; are not 0, 1—say if we choose them
to be 1/2,1—then pg, p; are not orthogonal, so we cannot distinguish the states
perfectly even with collective measurements. To remedy this, let pg = Wf?)” and
p1 = W so that F(pg,p1) decays exponentially with n. Show that now any
feasible pg, p1 can be acheived by My, M; that are linear combinations of the 2"
operators I R I ® - [, IRTR---QF, ... FF®---®F.
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2. Measure concentration

(a)

Let z € N¢(0,1), meaning z = x + iy with z,y € N(0,1/2). For v > 0, calculate
Pr[|z|? > ¢] and the associated density p(t) = —< Pr[|z|> > ¢]. Use this to calcu-
late E[e’\|zl2]. Note that this becomes oo for large enough A. Think about why
this is but you don’t need to write your answer.

Let |y) € C%95 be a complex Gaussian vector with mean zero and variance
such that E[|y)y|] = I/dadp. Let |a) € C% be a unit vector. Compute
Elexp(Atr[aya])]. Show that for 0 < e <1,

1
Pr [tr[awl] > 6;:1 < emarde? (2)

for some constant ¢; > 0. As a hint, you should find that the optimal A is
dadp(1—(14¢€)71). You may use without proof the fact that e —In(1 + ¢€) > €*/6.

Let 1) € C4495 be a random unit vector. Show that 1 satisfies the same bound
as (2), i.e. that

Pr [tr[oz@Z)A] > L+ 1 < emardpe’ (3)
da

Assume that dy < dp. We know from random matrix theory that ||valle ~
(1 + /da/dg)*/da. We will use simpler arguments to achieve this bound up
to the constant factor in front of \/da/dg. Suppose dgp = coda/€® for some
ca > 0. Show that ||Yalle < (1 + €)/da with high probability. Do this by
first showing that with high probability tréayws < (1 4 €)/da for all & in a 4-
net on C%, with § = 1/2. You may want to use the fact that if tr X = 0 then
tr Xopg = tr X (4 — I/d) < || X|1||va — I/d||- If you don’t see how to prove
this, show the bound for dg = codalog(da/e)/e* using a O(e/d4)-net for partial
credit.



