
Q. Inf. Science 3 (8.S372 / 18.S996) — Fall 2020

Assignment 9

Due: Friday, Dec 4, 2020 at 5pm on canvas.

1. Monogamy of entanglement

(a) The principle ofmonogamy of entanglement is that entanglement cannot be shared
without limit, unlike classical correlations. However, the larger the local dimen-
sion, the more systems can be be simultaneously entangled. We will start with
an example of this phenomenon. Let

|ψ⟩A1,...,An
=

∑
π∈Sn

sgn(π) |π1⟩ ⊗ |π2⟩ ⊗ · · · |πn⟩ ∈ (Cn)⊗n. (1)

Here Sn is the symmetric group, meaning the set of n! permutations of n objects.
The sign of a permutation sgn(π) = (−1)m where m is the number of transpo-
sitions (swaps of two elements) in any decomposition of π. We will show that
ψA1A2 is far from Sep(n, n). To show this, let M = (I − swap)/2. Show that
tr[MψA1A2 ] = 1 and tr[Mσ] ≤ 1/2 for any σ ∈ Sep(n, n).

(b) Despite the above example, nontrivial statements about monogamy can be made
when the number of systems is only logarithmic in the local dimension. This
will follow from some information-theory tools that we now develop. Let I(A :
B|X)ρ = ϵ and suppose that X is classical while A,B are quantum. Show that

there exists a separable state σAB such that 1
2
∥ρAB − σAB∥1 ≤

√
ϵ ln(2). (Hint:

you should review pset 6, problem 1(b)

(c) Consider the state ρAB1...Bk , where A has dimension dA and each Bi has dimension
dB. Let {M, I−M} be a 1-LOCC measurement on two systems A and B, meaning
that it can be written as a measurement on system B followed by a two-outcome
measurement on system A, i.e.

M =
m∑
y=1

Qy ⊗Ry, (2)

where each Ry ≥ 0,
∑m

y=1Ry = I and 0 ≤ Qy ≤ I. It turns out that most of the

ρABi are close to Sep when measured with M of this form. To see this, consider
the state σAY1...Yk where we measure each system Bi for i = 1, . . . , k using the
measurement {R1, . . . , Rm} and we record the answer in a classical system Yi.
Let Y<i := Y1Y2, . . . , Yi−1. Show that

k∑
i=1

I(A : Yi|Y<i)σ ≤ log(dA). (3)
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(d) Given ρ and M as above, define hSep(M) = max{trMσ : σ ∈ Sep(dA, dB)}. Show
that

E
i∈[k]

tr
[
MρABi

]
≤ hSep(M) +

√
2 ln(dA)

k
. (4)

This shows a nontrivial monogamy relation when the number of systems is only
logarithmic in the local dimension. On the other hand, it applies only to a re-
stricted family of measurements. Hint: you may want to relate I(A : Yi|Y<i) to
the states of ρ resulting from measuring some subsystems and conditioning on the
outcomes, while leaving other systems unmeasured or traced out.

2. The Toric Code An exciting avenue for the realization of fault-tolerant quantum
computation is through the encoding of bits in many-body ’topologically ordered’ sys-
tems. This was first proposed by Kitaev in a seminal paper; here we walk through a
few of the basic ideas (figures are also from that paper). This problem is optional for
those who signed up for extra scribing.

We work with a k × k square lattice on a torus, and place a qubit on each link of the
lattice. Consider the following operators:

As =
∏

j∈star(s)

Xj Bp =
∏

j∈boundary(p)

Zj (5)

which are defined in the star of a lattice site s or the boundary of a lattice plaquette
p. We will be interested in states |ψ⟩ with As |ψ⟩ = BP |ψ⟩ = |ψ⟩, or, equivalently, the
ground state dynamics of the Hamiltonian:

H = −
∑
s

As −
∑
p

Bp (6)

as well as states that violate this condition minimally. Hint: Drawing pictures will
make most of these problems far simpler, and proof-by-carefully-explained-pictures is
encouraged.
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(a) Show that [As, Bp] = 0, and determine the allowed eigenvalues of each.

(b) There is a convenient, pictographic way to understand the ground states of this
system. Working in the |±x⟩ basis, consider any qubit j to be ’unoccupied’ if
Xj = +1, and ’occupied’ if Xj = −1. Show that any state |ψ⟩ with As |ψ⟩ = |ψ⟩
is a superposition of states where the ’occupied’ sites form closed loops. Pictures
strongly encouraged.

(c) What happens when the operators Bp act on one of the closed loops states? Argue
that any state |ψ⟩ with As |ψ⟩ = Bp |ψ⟩ = |ψ⟩ must be an equal weight superposi-
tion of all contractible closed loop states. We will call these states ground states.

(d) However, there remain two non-contractible closed loops around the torus, and the
behavior of the ground states around these loops is undetermined. To show this,
let t be a string along links and sites of the lattice, and w a string of plaquettes
and sites (see figure). We define the string operators:

Sz(t) =
∏
j∈t

Zj Sx(w) =
∏
w∈t

Xj (7)

Let t, w be closed loops, including if they go around a non-contractible loop of the
torus, and let |ψ⟩ , |θ⟩ be equal-weight superposition of closed loop states as above.
Show that ⟨ψ| [Sz(t), H] |θ⟩ = ⟨ψ| [Sx(w), H] |θ⟩ = 0. Show that if t or w is a con-
tractible loop then Sz(t), Sx(w) act trivially on the ground states. Argue that they
act non-trivially on the ground state subspace if t, w are non-contractible loops.

Continuing to work in the |±x⟩ basis, where the As operators are most easily diag-
onalized, the four ground states of this system may be labeled by ν1 := Sx(γ1) =
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±1, ν2 := Sx(γ2) = ±1, where γ1, γ2 are loops around the two nontrivial cycles of
the torus. Each of the ground states is an equal weight sum over all contractible
closed-loop configurations, but includes non-contractible loops as determined by
ν1, ν2. Argue that no local measurement, i.e. any operator involving qubits at
most a distance ℓ << k from each other, can distinguish among these four ground
states.

(e) Now we are interested in excited states, i.e. states |ϕ⟩ which do not have As |ϕ⟩ =
Bp |ϕ⟩ = |ϕ⟩. Näıvely, our first guess would be to find a state which violates
a single As or Bp constraint. However, since

∏
sAs =

∏
pBp = 1, this is not

possible. Instead, we must violate two As or Bp constraints.

Let t, w be strings with two endpoints. Show that Sz(t) |ν1, ν2⟩ violates the As

constraints at the endpoints (and nowhere else) and Sx(w) |ν1, ν2⟩ violates the Bp

constraints at the endpoints (and nowhere else).

Argue that that if t, t′ are two loops with the same endpoints, that may be
smoothly deformed into each other (i.e. they don’t go off around non-trivial cy-
cles of the torus in different ways), then Sz(t) |ν1, ν2⟩ = Sz(t′) |ν1, ν2⟩, so that the
string is not physical.

The endpoints of the strings are excitations, and should be regarded as physical
particles in this theory. They may move, hop around, and annihilate. We refer
to the ends of Sz(t) as e particles and the ends of Sx(w) as m particles.

(f) Suppose that there is an e particle at a site j, and let t be a string from j to j′.
Argue that Sz(t) annihilates the e particle at j and creates a e particle at j′. (in
other words it hops the e particle from j to j′.)

The bizarre and useful aspects of topologically ordered states is that the particles
have non-trivial statistics. Ordinarily, dragging two different species of particles
around each other does not yield any exchange statistics. Suppose that we create
two e particles and two m particles, as shown in the figure, connected by strings
t, q. The initial state is then:

|Ψ⟩ = Sz(t)S(x)(q) |ν1, ν2⟩ (8)
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Now, we hop the m particle around the e particle by applying Sx(c), where c is a
closed loop. Show that:

Sx(c) |Ψ⟩ = − |Ψ⟩ (9)

The phase here is not due to any dynamics or energy, but rather due to the
topological nature of the wavefunction. It arises because these excitations are not
bosons, nor fermions, but anyons.

(g) Finally, we arrive at the application of a quantum gate. Suppose we allow there
an excitation in some region of our toric code (one may add extra excitations
outside this region to account for the fact that

∏
sAs =

∏
pBp = 1). There are

four possibilities for these excitations:

i. Trivial. There’s no particle there, and we label the lack of an excitation by 1

ii. There is an e particle there, which we denote by e.

iii. There is an m particle there, which we denote by m.

iv. There are both an e and an m particle there, which we denote by em.

One needs to ’course grain’ the lattice model slightly to allow both an e and an m
to be present - think of this as the region of a sample around the end of a probe.
Note that as two e or two m particles may always annihilate, we exclude cases
with two or more e or m particles.

Now suppose we have two such regions, say near the end of two probe tips. Hence
we have a set of states |1, 1⟩ , |e, 1⟩ , ..., |em, em⟩. Let B (braiding) be the operation
of dragging one of these excitation regions around the other, as in the previous
problem. What are the matrix elements of B acting on this 16 dimensional space?
(Most of these are zero; just give the values of the nonzero elements).

This problem walked us through the toric code, in particular the non-trivial braiding
operation. One extraordinary aspect of this model is that the qubits are completely
protected. Just as the ground states are locally indistinguishable, no isolated e or m
particle may be annihilated by local operators. And one may perform braiding among
many excitation regions to execute a wide array of gates.

However, all the braiding operators in the toric code are diagonal, and so all the
gates we can perform (even with many excitation regions) commute - surely this is
not sufficient for universal computing. However, there exist other ‘topological’ orders
which enjoy the same protections, but have an additional property: when particles are
dragged around each other, the particle type changes (this would be like an e changing
to an m after braiding). These nonabelian topological orders are sufficient for universal
computation, and an active area of research is proposing new physical materials and
implementations to perform this. Recent interest has been focused around the edges
of nanowires and the cores of vortices in topological superconductors.
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