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1.0.1 Entanglement and Density Matrices

In quantum mechanics (QM), a pure state |ψ〉 is a vector in C2,Cd,C2 ⊗C2, etc, that

we use to describe a system whose state is known. On the other hand, a mixed state

is when a system is a statistical mixture of pure states, and must be described by a

density matrix :

ρ =
∑
i

pi |ψi〉 〈ψi| ∈ H(Cd) (1.1)

Here the system is in state |ψi〉 with probability pi. Note that any pure state |ψ〉 has

a density matrix representation as |ψ〉 〈ψ|. We shall use the notation ψ ≡ |ψ〉 〈ψ|.

As a general rule, density matrices are Hermitian matrices such that Tr ρ = 1 and

all eigenvalues are nonnegative (often written as ρ >= 0). One should think of this as

the quantum analog of the probability simplex, and indeed there are several notions

of a probability distribution encoded in a density matrix ρ. If we measure a system in

the natural bases (|1〉 ... |d〉), then ρii is the probability to find the system in the state

|i〉. So we may think of the diagonal entries of ρ as a probability distribution. This

holds true even if we change basis, and so the eigenvalues of ρ are again a probability

distribution.

Mixed states can be obtained from entangled states by discarding information about

a subsystem. Let our system partition into A and B subsystems. Then ψA ≡ Tr Bψ.

Specifically, suppose that we can write a pure state |ψ〉 as:

|ψ〉 =
∑
ij

cij |i〉 ⊗ |j〉 (1.2)

(we will sometimes omit tensor product symbols below). Then we can write the density

matrix as:

ψ =
∑
ijkl

cijc
∗
kl |i〉 ⊗ |j〉 〈k| ⊗ 〈l| =

∑
ijkl

cijc
∗
kl |i〉 〈k| ⊗ |j〉 〈l| (1.3)

Now, note that we may consider Tr : L(Cd) → C, and I : L(Cd) → Cd. So that

Tr B = Tr ⊗ I. Accordingly, taking the trace over the B subsystem above replaces
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Tr (|j〉 〈l|) = δjl, and so:

ψA = Tr Bψ =
∑
ijk

cijc
∗
kj |i〉 |j〉 (1.4)

If we consider cij to be the entries of a (not necessarily square) matrix C, then we can

write this as:

ψA = CC† (1.5)

Examples:

1. Suppose that C is rank 1, or equivalently that cij = αiβ
∗
j . Then ψ is an unen-

tangled product state, and ψA = αiα
∗
j = |α〉 〈β|. Later we will see that ψ is a

product state ↔ ψA is pure state ↔ ψB is a pure state.

2. Suppose that C has the form C = 1
d
U , where U is a unitary matrix, and d

is the dimension of the matrix (necessary so that Tr ψ = 1). We can write

U =
∑

i |ui〉 〈ui|, where ui are the orthonormal eigenvectors of U . Then we can

write the quantum state as:

|ψ〉 =
1√
d

∑
i

|ui〉 |i〉 (1.6)

Then one can check that

ψA =
1

d

∑
i

|ui〉 〈ui| (1.7)

These two examples display the range of information that can be lost when we throw

out a subsystem. In the first example, the A subsystem remains in a pure quantum

state, despite the loss of B. On the other hand, discarding the B system destroys all

correlation in A in the second example, leaving A in a “fully mixed state.”

These phenomena are related to the singular value decomposition (SVD) of the

matrix C. Let C = UDV †, with U, V unitary and D diagonal. Note that ψA = CC† =

UD2Udagger. this implies that the eigenvalues of ψA are the squares of the singular

values of C (eig(A) = svd(C)2). Exercise: Show that eig(ψA) = eig(ψB). This also

implies that ψA does not depend on V . Exercise: Show that ψA is independent of

unitary transformations on the B subsystem, and vice-versa.

1.0.2 Purifications (to be continued)

. The basic idea of a purification is to construct a pure state from a density matrix.

Given some ρ on a system A, can we add some subsystem B and create a state |ψ〉 on
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systems A and B so that ψA = Tr Bψ = ρ? In the next class, we will show that this

is always possible, but not unique. This will lead to interesting results regarding bit

commitment.


