8.8372/18.5996 Quantum Information Science III Fall 2020
Lecture 1: Sep 1, 2020

Lecturer: Aram Harrow Scribe: Michael DeMarco

1.0.1 Entanglement and Density Matrices

In quantum mechanics (QM), a pure state |1b) is a vector in C? C?, C? @ C2, etc, that
we use to describe a system whose state is known. On the other hand, a mized state
is when a system is a statistical mixture of pure states, and must be described by a
density matriz:

p= sz' [i) (il € H(CT) (1.1)

Here the system is in state |¢;) with probability p;. Note that any pure state [¢)) has
a density matrix representation as [¢) (¢)|. We shall use the notation ¢ = [¢) (.

As a general rule, density matrices are Hermitian matrices such that Tr p = 1 and
all eigenvalues are nonnegative (often written as p >= 0). One should think of this as
the quantum analog of the probability simplex, and indeed there are several notions
of a probability distribution encoded in a density matrix p. If we measure a system in
the natural bases (|1) ... |d)), then p;; is the probability to find the system in the state
|i). So we may think of the diagonal entries of p as a probability distribution. This
holds true even if we change basis, and so the eigenvalues of p are again a probability
distribution.

Mixed states can be obtained from entangled states by discarding information about
a subsystem. Let our system partition into A and B subsystems. Then ¢4 = Tr g1.
Specifically, suppose that we can write a pure state |¢) as:

9) =Y euli) ©15) (12

(we will sometimes omit tensor product symbols below). Then we can write the density
matrix as:

Y= cyciali) ®15) (Kl @ (1l =) e li) (Kl @ 15) (1l (1.3)

ijkl ijkl
Now, note that we may consider Tr : L(C%) — C, and I : L(C?) — C? So that
Tr p = Tr ® I. Accordingly, taking the trace over the B subsystem above replaces
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Tr (|7) (I|) = 641, and so:

Ya="Tr pyp = ZCiJCZj 1) 17) (1.4)
ijk
If we consider ¢;; to be the entries of a (not necessarily square) matrix C, then we can

write this as:

Ya=CCT (1.5)
Examples:

1. Suppose that C' is rank 1, or equivalently that ¢;; = «;5;. Then 1 is an unen-
tangled product state, and ¥4 = ;o] = |a) (B]. Later we will see that v is a
product state <+ 14 is pure state <> Y is a pure state.

2. Suppose that C' has the form C' = éU , where U is a unitary matrix, and d
is the dimension of the matrix (necessary so that Tr ¢ = 1). We can write
U = >, |uw) (u;|, where u; are the orthonormal eigenvectors of U. Then we can
write the quantum state as:

1 .
¥) = N Z i) [4) (1.6)

Then one can check that

va = 3 ) (1.7

These two examples display the range of information that can be lost when we throw
out a subsystem. In the first example, the A subsystem remains in a pure quantum
state, despite the loss of B. On the other hand, discarding the B system destroys all
correlation in A in the second example, leaving A in a “fully mixed state.”

These phenomena are related to the singular value decomposition (SVD) of the
matrix C. Let C = UDVT, with U,V unitary and D diagonal. Note that ¢, = CCT =
UD?U¢agger. this implies that the eigenvalues of 14 are the squares of the singular
values of C' (eig(A) = svd(C)?). Exercise: Show that eig(¢4) = eig(¢p). This also
implies that 14 does not depend on V. Exercise: Show that 14 is independent of
unitary transformations on the B subsystem, and vice-versa.

1.0.2 Purifications (to be continued)

. The basic idea of a purification is to construct a pure state from a density matrix.
Given some p on a system A, can we add some subsystem B and create a state [i) on
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systems A and B so that ¥4 = Tr gy = p? In the next class, we will show that this
is always possible, but not unique. This will lead to interesting results regarding bit
commitment.



