8.S372/18.S996 Quantum Information Science III

Fall 2020
Lecture 1: Sep 1, 2020
Lecturer: Aram Harrow
Scribe: Michael DeMarco

1.0.1 Entanglement and Density Matrices

In quantum mechanics (QM), a pure state $|\psi\rangle$ is a vector in $\mathbb{C}^{2}, \mathbb{C}^{d}, \mathbb{C}^{2} \otimes \mathbb{C}^{2}$, etc, that we use to describe a system whose state is known. On the other hand, a mixed state is when a system is a statistical mixture of pure states, and must be described by a density matrix:

$$
\begin{equation*}
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \in H\left(\mathbb{C}^{d}\right) \tag{1.1}
\end{equation*}
$$

Here the system is in state $\left|\psi_{i}\right\rangle$ with probability p_{i}. Note that any pure state $|\psi\rangle$ has a density matrix representation as $|\psi\rangle\langle\psi|$. We shall use the notation $\psi \equiv|\psi\rangle\langle\psi|$.

As a general rule, density matrices are Hermitian matrices such that $\operatorname{Tr} \rho=1$ and all eigenvalues are nonnegative (often written as $\rho>=0$). One should think of this as the quantum analog of the probability simplex, and indeed there are several notions of a probability distribution encoded in a density matrix ρ. If we measure a system in the natural bases $(|1\rangle \ldots|d\rangle)$, then $\rho_{i i}$ is the probability to find the system in the state $|i\rangle$. So we may think of the diagonal entries of ρ as a probability distribution. This holds true even if we change basis, and so the eigenvalues of ρ are again a probability distribution.

Mixed states can be obtained from entangled states by discarding information about a subsystem. Let our system partition into A and B subsystems. Then $\psi_{A} \equiv \operatorname{Tr}_{B} \psi$. Specifically, suppose that we can write a pure state $|\psi\rangle$ as:

$$
\begin{equation*}
|\psi\rangle=\sum_{i j} c_{i j}|i\rangle \otimes|j\rangle \tag{1.2}
\end{equation*}
$$

(we will sometimes omit tensor product symbols below). Then we can write the density matrix as:

$$
\begin{equation*}
\psi=\sum_{i j k l} c_{i j} c_{k l}^{*}|i\rangle \otimes|j\rangle\langle k| \otimes\langle l|=\sum_{i j k l} c_{i j} c_{k l}^{*}|i\rangle\langle k| \otimes|j\rangle\langle l| \tag{1.3}
\end{equation*}
$$

Now, note that we may consider $\operatorname{Tr}: L\left(\mathbb{C}^{d}\right) \rightarrow \mathbb{C}$, and $I: L\left(\mathbb{C}^{d}\right) \rightarrow \mathbb{C}^{d}$. So that $\operatorname{Tr}_{B}=\operatorname{Tr} \otimes I$. Accordingly, taking the trace over the B subsystem above replaces
$\operatorname{Tr}(|j\rangle\langle l|)=\delta j l$, and so:

$$
\begin{equation*}
\psi_{A}=\operatorname{Tr}_{B} \psi=\sum_{i j k} c_{i j} c_{k j}^{*}|i\rangle|j\rangle \tag{1.4}
\end{equation*}
$$

If we consider $c_{i j}$ to be the entries of a (not necessarily square) matrix C, then we can write this as:

$$
\begin{equation*}
\psi_{A}=C C^{\dagger} \tag{1.5}
\end{equation*}
$$

Examples:

1. Suppose that C is rank 1 , or equivalently that $c_{i j}=\alpha_{i} \beta_{j}^{*}$. Then ψ is an unentangled product state, and $\psi_{A}=\alpha_{i} \alpha_{j}^{*}=|\alpha\rangle\langle\beta|$. Later we will see that ψ is a product state $\leftrightarrow \psi_{A}$ is pure state $\leftrightarrow \psi_{B}$ is a pure state.
2. Suppose that C has the form $C=\frac{1}{d} U$, where U is a unitary matrix, and d is the dimension of the matrix (necessary so that $\operatorname{Tr} \psi=1$). We can write $U=\sum_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right|$, where u_{i} are the orthonormal eigenvectors of U. Then we can write the quantum state as:

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i}\left|u_{i}\right\rangle|i\rangle \tag{1.6}
\end{equation*}
$$

Then one can check that

$$
\begin{equation*}
\psi_{A}=\frac{1}{d} \sum_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right| \tag{1.7}
\end{equation*}
$$

These two examples display the range of information that can be lost when we throw out a subsystem. In the first example, the A subsystem remains in a pure quantum state, despite the loss of B. On the other hand, discarding the B system destroys all correlation in A in the second example, leaving A in a "fully mixed state."

These phenomena are related to the singular value decomposition (SVD) of the matrix C. Let $C=U D V^{\dagger}$, with U, V unitary and D diagonal. Note that $\psi_{A}=C C^{\dagger}=$ $U D^{2} U^{d}$ agger. this implies that the eigenvalues of ψ_{A} are the squares of the singular values of $C\left(\operatorname{eig}(A)=\operatorname{svd}(C)^{2}\right)$. Exercise: Show that $\operatorname{eig}\left(\psi_{A}\right)=\operatorname{eig}\left(\psi_{B}\right)$. This also implies that ψ_{A} does not depend on V. Exercise: Show that ψ_{A} is independent of unitary transformations on the B subsystem, and vice-versa.

1.0.2 Purifications (to be continued)

. The basic idea of a purification is to construct a pure state from a density matrix. Given some ρ on a system A, can we add some subsystem B and create a state $|\psi\rangle$ on
systems A and B so that $\psi_{A}=\operatorname{Tr}_{B} \psi=\rho$? In the next class, we will show that this is always possible, but not unique. This will lead to interesting results regarding bit commitment.

