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Today

• unitary freedom of purifications

• applications to bit commitment

• norms, trace distance and fidelity

We can use matrix considerations from the previous lecture to see how to purify

quantum states. Recall that we can write:

|ψ〉 =
∑
i,j

ci,j |i〉 ⊗ |j〉 ≡ vec(C) (2.8)

ψA = CC† (2.9)

C = UDV † =⇒ ψA = UD2U † (2.10)

Now, given ψA, ∃U,D s.t. ψA = UD2U †. We can choose C = UD or C = UDV † for

any unitary V . This allows to purify any density matrix.

Besides the choice of V , there is another redundancy inherent in this formalism.

Suppose that we have two matrices (of the same size) C, C̃ such that CC† = C̃C̃†,

with C = UDV † and C̃ = ŨD̃Ṽ †. Then UD2U † = ŨD̃2Ũ † =⇒ D = D̃, with

D = diag(λ1 λ1 λ1 λ2 λ2 λ3). We have the freedom to right multiply U by any unitary

matrix that commutes with D, i.e. which acts block-diagonally on the degenerate

eigenvalues in D:

CC† = C̃C̃†UD2U † = ŨD̃2Ũ † =⇒ D = D̃U = ŨR for some R such that [R,D] = 0

(2.11)

These considerations allow us to prove:

Theorem 1 Given states |ψ〉AB and |γ〉AB, ψA = γA ⇐⇒ there exists a unitary W

s.t. (I ⊗W ) |ψ〉 = |γ〉.

Proof: ⇐= is easy. =⇒ : Let |ψ〉 = vec(X), |γ〉 = vec(Y ) =
∑
i,j

Yi,j |i〉 ⊗ |j〉, with

XX† = Y Y †, X = U1D1V
†
1 , Y = U2D2V

†
2 Now, U1D

2
1U
†
1 = U2D

2
2U
†
2 =⇒ D1 = D2

Hence U2 = U1R, for some R s.t. [R,D1] = 0.

2-1
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On the other hand, this implies that:

(I ⊗W ) |ψ〉 = (I ⊗W )
∑
i,j

Xi,j |i〉 ⊗ |j〉 = (2.12)∑
i,j

Xi,j |i〉 ⊗W |j〉 = (2.13)∑
i,j,k

Xi,jWj,k |i〉 ⊗ |k〉 = vec(XW ) (2.14)

(Note that applying unitary to the 1st system is represented by left-multiplication on

X) Now, since W = V1RV
†
2 , XW = (U1D1V

†
1 )(V1RV

†
2 ) = U2D2V

†
2 = Y and so the

proof is complete.

Corollary: Consider two states |ψ〉AB, |γ〉AB′ . Then ψA = γA ⇐⇒ either there is

an isometry V : B → B′ or V : B′ → B that relates them. (This allows us to relax the

condition that C, C̃ be of the same size.

Quantum Key Distribution We now turn to the BB84 cryptosystem as applied

to quantum key distribution (QKD). Alice chooses a random bit r, and a random basis

b ∈ {X,Z}

(Z basis: |0〉, |1〉 X basis: |+〉, |−〉 = |0〉±|1〉√
2

)

Alice sends this to Bob, and he measures in a random basis m ∈ {X,Z}. Bob tells

Alice he’s measured, then both reveal bases, discard if b! = m, otherwise keep answer.

Repeat N times, get about N
2

bits. If Eve measures, she will introduce errors, which

Alice and Bob can detect.At the end of this, Alice and Bob have a “key”, a shared

secret random string.

Coin Flipping

In quantum mechanics, strong coin-flipping is impossible, weak coin-flipping with

any bias ε > 0 is possible. Alice can choose any bias between 0 and 1
2

+ ε, Bob can

choose anything in [1
2
− ε, 1].

Bit Commitment

In bit commitment, Alice and Bob do not trust each other, so we want to devise a

way for Alice to commit a bit to Bob, and we would like to store this bit for a while,

without Bob being able to see it nor Alice being able to change it, before revealing it

to Bob. Formally, there are two phases: Commit and Reveal. In the commit phase,

Alice commits to a bit b, and then in the reveal phase Bob learns b.
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A secure bit commitment most satisfy:

1. Valid: If both players are honest, Bob learns b and doesn’t abort

2. Hiding: After Commit phase, Bob can’t learn b

3. Binding: During Reveal phase, Alice can convince Bob to accept only one value

of b.

Related to bit commitment is oblivious transfer (OT): stronger than Bit Commit-

ment, equivalent to secure multi-party computation. Alice chooses bits (x0, x1). Bob

inputs b, learns xb. Alice learns nothing.

Generically, OT > BC > strong coin flipping.

Many of these things are possible quantumly with computational assumptions, but

impossible without them. (See Urmila Mahadev + others. . . LWE=learning with

errors)

Theorem 2 Information-theoretically secure quantum bit commitment is impossible.

Detour: Quantum Channels

QCs encode Noisy quantum operation ρA → N(ρB) Which N are allowed? (Anal-

ogous to unitary or stochastic matrices for pure-state quantum mechanics or probabil-

ity)? We allow the following operations:

1. TPCP maps = Trace-preserving, completely positive linear maps

2. Kraus decomposition. N(ρ) =
∑
k

EkρE
†
k, where {Ek} are Kraus operators

3. N(ρ) = trE[V ρV †], where V : A→ B ⊗ E is an isometry.

For our purposes, we will take the third option.

Now a secure bitcommitment protocol looks like Alice and bob exchanging bits, a
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commit phase, more exchanges, and then a reveal phase:

Alice→ Bob

←
→
←

Commit phase: state is ρ0 or ρ1

←
→
←
→

Reveal phase

We will modify this to make players “honest but curious”: Bob will try to discover

the content of the bit during the commit phase, but would not act on any information he

discovers. Quantumly, this means that whenever Alice or Bob does a noisy operation,

just do the isometry, skip the partial trace. This means that, if the committed bit is

A and B is whatever systems are introduced during the player’s attempt to discover

or cheat, the global state of AB is always pure.

At commit phase, state is |ψb〉AB for b ∈ {0, 1}. Suppose that protocol is perfectly

hiding. =⇒ ψB
0 = ψB

1 . |ψ0〉AB = (W ⊗ I) |ψ1〉AB. =⇒ not at all binding. Done.

As a generalizatino, can we have a protocol that is ε-hiding, δ-valid? IE Bob can

only learn ε information, Alice gets caught with probability 1− δ. We would then need

need a robust version of purification uniqueness: If ψA ∼ γA, does there exist W s.t.

〈ψ| (I ⊗W ) |γ〉 ∼ 1? And that leads us to norms.

Norms

A Norm is a function || · || : x 7→ ||x||. Such that:

1. ||cv|| = |c|||v|| for scalar c.

2. ||v + w|| ≤ ||v||+ ||w||

3. ||v|| = 0↔ v = 0 (separating).

In effect, norms measure the distance between states or matrices. We should think of

them as generalizations of the overlaps || 〈φ| |ψ〉 || in regular quantum mechanics.

Lp norms are widely used for vectors:
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• ||x||Lp =

(∑
i

|xi|p
) 1

p

• L2 = Euclidean

• L1 = Manhattan

• L∞ = maxi|xi|

For matrices, we have Sp = Schatten-p norms:

• ||X||Sp = ||svals(X)||Lp

• ||X||S1 = sum of svals = “trace norm”

• ||X||S∞ = biggest singular value

Note that every formulation of quantum mechanics comes with its own natural

norm/geometry:

• Pure-state quantum mechanics: L2 unit sphere.

• Probabilities: non-negative vectors in L1 unit sphere

• Density matrices: Positive semi-definite matrices in S1 unit sphere

• Measurement operators: life in S∞


