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3.0.3 Norms

Given a tuple x ∈ Cd we define

‖x‖`p ≡

(
d∑
i=1

|xi|p
)1/p

= ‖x‖p,

is known as the `p norm. For `1 this is useful for probability distributions (where the

norm is required to be 1) while `2 is useful for pure quantum states (where the norm of

a valid state vector is again required to be 1). The `∞ norm finds use when describing

classical observables.

We can also define norms over matrices

‖M‖Sp ≡ ‖sing. val. of M‖`p ,

is known as the Schatten p-norm. Note that the ‖M‖S∞ is simply the largest of the

absolute values of the singular values of M .

This is relevant for measurements, e.g., {M, I −M} is a legal set of measurements

iff 0 ≤M ≤ I in the PSD ordering iff M is PSD and its Schatten-∞ norm is less than

or equal to 1. Note that A ≥ B iff A−B is PSD (possitive-semi-definite).

We can consider the Schatten-2 norm, which is nice operationally,

‖M‖S2 ≡ ‖vec(M)‖`2 =
√

tr(M †M),

We can also consider the Schatten-1 norm,

‖M‖S1 ≡
∑
i

|λi| = tr(M),

where the last equality applies only if the singular values are positive (this means that

M is PSD). This is equivalently tr
√

(M †M) if M is a Hermitian operator. All of these

results can be seen by taking singular value decompositions of the operator M .
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The reductions given above are part of a more general scheme of defining inner

products over matrices, e.g.,

trA†B =
∑
ij

A∗ijBij = 〈A,B〉.

This apparently direct analogy between `p and Sp norms is often useful, and can

be a good technique for visualization.

We define the dual norm as the result, given a norm ‖·‖∗, the norm

‖x‖dual,∗ ≡ max
‖y‖∗≤1

|〈x, y〉|.

The `2 norm is dual to itself. We can establish

|〈x, y〉| ≤ ‖x‖`2‖y‖`2 ≤ ‖x‖`2 ,

while the maximum is achieved by y = x/‖x‖`2 . This establishes duality of the norm

with itself. Note that the direct analogy to this choice does not always hold for other

norms.

Note that, under our level of rigour, the dual operation is its own inverse.

We can summarize dualities between `p norms by the following relation,

‖·|`p,d = ‖·|`q ,

iff 1/p+ 1/q = 1, which is closely related to the Hölder inequality.

For matrices we use the Hilbert-Schmidt inner product

〈A,B〉 = tr(A†B) = 〈vec(A), vec(B)〉.

We also present the following fact without proof.

‖M‖S1 = max
Uunitary

|MU |

3.0.4 Comparing probability distributions

Total variation distance

T (p, q) =
1

2
‖p− q‖1 = max

S
[p(S)− q(S)] ,

where this maximum is taken over subsets of elements,∑
x

|p(x)− q(x)|.
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Sometimes we want something that looks like the `2 norm, though, because of its nice,

seemingly geometric properties, but the standard inner product is not great: summing

p(x)q(x) over events is generally less than 1.

We can instead consider the fidelity

〈√p,√q〉 =
∑
x

√
p(x)q(x) = F.

Properties of this include 1 − F ≤ T ≤
√

2(1− F ), as well as F (p1 ⊗ p2, q1 ⊗ q2) =

F (p1, q1)F (p2, q2), which is a much nicer behavior than how T acts over tensor products.

We also note F (p, q) ≤ 1 and attains equality iff p = q.

These facts help us to prove asymptotic statements like the one below

1− T (p⊗n, q⊗n) ∼ e−cn,

where ec1n ≤ 1− T ≤ ec2n

3.0.5 Comparing quantum states

The naive natural distance here is the `2 norm

‖|α〉 − |β〉‖`2 =
√

2(1− Re(〈α|β〉)),

but this ignores phase and can allow identical states to appear far from each other.

Ignoring this we recover the familiar |〈α|β〉|, which resolves this ambiguity.

For density matrices the trace distance seems natural

T (ρ, σ) = ‖ρ− σ‖S1 ,

which is the maximum over 2-outcome measurements M of tr(M(ρ− σ)).

We can ask questions now like what happens if we apply a noisy quantum operation?

T (N(ρ), N(σ)) vs T (ρ, σ)?

The easiest way to think about this, says the lecturer, is an isometry followed by a

partial trace. Here N(ρ) = trE(V ρV †), where V is an isometry iff V †V = I. We

know that the isometry cannot change the trace distance, as it implies a corresponding

change in the optimal measurement M 7→ V †MV . The trace over the environment can

certainly not increase the chance of distinguishing the two states, and a proof might

stem from considering the natural ideal measurement I ⊗M on the entire system with

respect to the ideal measurement M on the relevant (i.e., non-traced over) system.
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The lecturer makes a comment on another proof of this fact relating operator norms,

e.g., that we might alternatively measure ‖N‖S1→S1 ≤ 1.

We can also consider the mixed state fidelity or Schatten-1 norm

‖√ρ
√
σ‖S1 = tr

√√
ρσ
√
σ,

which is used incredibly rarely. This can make some more natural sense if σ is a pure

state. Note also that this definition reduces to |〈ψ|φ〉| in the case of two pure states,

and thus might reasonably generalize fidelity to mixed states.

On the problem set we will show T 2 + F 2 = 1 for pure states. We might again ask

what happens to this measure if we act on it with a quantum channel:

F (ρ, σ) ≤ F (N(ρ), N(σ)).

Theorem 3 Uhlmann’s theorem: F (ρ, σ) = max(|〈α|β〉|) over |α〉AB and |β〉AB which

agree with ρ and σ by partial trace over subsystem A (there are many such purifications

possible).

Note that if |Γ〉 = |i〉A⊗|i〉B (summation implied) is the maximally entangled state,

then trB(Γ) = IA the maximally mixed state (unnormalized).

We also introduce the canonical purification |φρ〉 = (
√
ρ ⊗ IB) |Γ〉. We can check

that this is both normalized and a valid purification. This gives us an equivalent

formulation of Uhlmann’s theorem.

Theorem 4 The alternative form of Uhlmann’s theorem is given with proof below:

F (ρ, σ) = max
U
|〈φρ|I ⊗ U |φρ〉|

= max
U
|〈Γ|(√ρ⊗ I)(I ⊗ U)(

√
σ ⊗ I)|Γ〉|

= max
U
|〈Γ|(√ρ

√
σ ⊗ U)|Γ〉|

= max
U
|tr√ρ

√
σUT |

= ‖√ρ
√
σ‖1

= F

There are many corollaries to this result, including the Fuch’s von-Graf inequalities

1− T ≤ F ≤
√

1− T 2

as well as stronger results against the no-go theorem for quantum bit commitment.


