# 8.S372/18.S996 Quantum Information Science III <br> Fall 2020 <br> Lecture 4: Sep 10, 2020 

Lecturer: Aram Harrow
Scribe: Annie Wei, Zane Rossi

### 4.1 Information Theory

Classical information theory

- Shannon entropy, typical sets, and compression
- Mutual information and noisy channel coding
- Relative entropy and hypothesis testing

Quantum information theory

- von Neumann entropy, Schumacher-Jozsa compression
- Mutual information and HSW coding
- Relative entropy and hypothesis testing
- Quantum capacity and LSD theorem


### 4.1.1 Entropy

For random variable $X \sim p$ :

$$
H(X)=H(p)=-\sum_{x} p(x) \log p(x)
$$

Quantifies uncertainty: for $d$ the alphabet size of $X$,

$$
0 \leq H(X) \leq \log d
$$

where lower bound corresponds to deterministic $p=(0,0,1,0,0)$, upper bounds corresponds to uniform $p=(1 / d) \cdot(1,1,1,1,1)$. Note $0 \log 0=0$.

Note: $\ell_{\alpha}$ norms work also, i.e.

$$
\|p\|_{1+\epsilon}=1-\epsilon H(p)+O\left(\epsilon^{2}\right)
$$

But $\|p\|_{0},\|p\|_{2},\|p\|_{\infty}$ also valid.
In the case of binary entropy, for $\Pi \in[0,1]$,

$$
H_{2}(\Pi)=H\binom{\Pi}{1-\Pi}
$$

### 4.1.1.1 Convexity Properties

Note that $H(p)$ is concave:

$$
H(\Pi p+(1-\Pi) q) \geq \Pi H(p)+(1-\Pi) H(q)
$$

This inequality is maximized by the uniform distribution. For example, assume that $(0.51,0.49)$ maximizes entropy. Then $(0.49,0.51)$ also does. But $H($ uniform $) \geq(1 / 2) H((0.51,0.49))+$ $(1 / 2) H((0.49,0.51))$.

We can also consider the convexity/concavity properties of fidelity and trace distance. In particular, fidelity is jointly concave:

$$
F\left(\Pi \rho_{1}+(1-\Pi) \rho_{2}, \Pi \sigma_{1}+(1-\Pi) \sigma_{2}\right) \geq \Pi F\left(\rho_{1}, \sigma_{1}\right)+(1-\Pi) F\left(\rho_{2}, \sigma_{2}\right)
$$

Trace distance is jointly convex:

$$
T\left(\Pi \rho_{1}+(1-\Pi) \rho_{2}, \Pi \sigma_{1}+(1-\Pi) \sigma_{2}\right) \leq \Pi T\left(\rho_{1}, \sigma_{1}\right)+(1-\Pi) T\left(\rho_{2}, \sigma_{2}\right)
$$

To see why this is true, define

$$
\begin{aligned}
& \rho^{A B}=\Pi|1\rangle\langle 1| \otimes \rho_{1}+(1-\Pi)|2\rangle\langle 2| \otimes \rho_{2} \\
& \sigma^{A B}=\Pi|1\rangle\langle 1| \otimes \sigma_{1}+(1-\Pi)|2\rangle\langle 2| \otimes \sigma_{2}
\end{aligned}
$$

Then use the fact that

$$
\begin{aligned}
& F(\rho, \sigma)=\Pi F\left(\rho_{1}, \sigma_{1}\right)+(1-\Pi) F\left(\rho_{2}, \sigma_{2}\right) \\
& T(\rho, \sigma)=\Pi T\left(\rho_{1}, \sigma_{1}\right)+(1-\Pi) T\left(\rho_{2}, \sigma_{2}\right)
\end{aligned}
$$

to get the right hand side of the inequalities. The left hand side comes from

$$
\begin{aligned}
\rho^{B} & =\Pi \rho_{1}+(1-\Pi) \rho_{2} \\
\sigma^{B} & =\Pi \sigma_{1}+(1-\Pi) \sigma_{2}
\end{aligned}
$$

### 4.1.1.2 Joint and Conditional Entropies

For $X, Y \sim p(x, y)$, define joint entropy

$$
H(X Y)=H(p)=-\sum_{x y} p(x, y) \log p(x, y)
$$

and conditional entropy

$$
H(Y \mid X)=\sum_{x} p(X=x) H(Y \mid X=x)
$$

For a classical distribution $p^{X Y}=\Pi_{1}|1\rangle \otimes p_{1}+\Pi_{2}|2\rangle \otimes p_{2}$,

$$
\begin{aligned}
H(Y \mid X=1) & =H\left(p_{1}\right) \\
H(Y \mid X=2) & =H\left(p_{2}\right) \\
\Rightarrow H(Y \mid X) & =\Pi_{1} H\left(p_{1}\right)+\Pi_{2} H\left(p_{2}\right)
\end{aligned}
$$

Note that we can rewrite the conditional entropy as

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{x} p(x) \sum_{y} p(y \mid x) \log p(y \mid x) \\
& =-\sum_{x y} p(x) \cdot \frac{p(x, y)}{p(x)} \cdot \log \frac{p(x, y)}{p(x)} \\
& =-\sum_{x y} p(x, y) \log p(x, y)+\sum_{x y} p(x, y) \log p(x) \\
& =H(X Y)+\sum_{x} p(x) \log p(x) \\
H(Y \mid X) & =H(X Y)-H(X)
\end{aligned}
$$

Note also that

$$
H(Y \mid X) \geq 0 \Leftrightarrow H(X Y) \geq H(X)
$$

although this is not always true quantumly. Also,

$$
H(Y \mid X) \leq H(Y)
$$

This statement, that conditioning reduces entropy, is also true quantumly. Note that it's also equivalent to concavity of entropy since

$$
\begin{aligned}
H(Y \mid X) & =\Pi_{1} H\left(p_{1}\right)+\Pi_{2} H\left(p_{2}\right) \\
H(Y) & =H\left(\Pi_{1} p_{1}+\Pi_{2} p_{2}\right)
\end{aligned}
$$

### 4.1.2 Application: Compression

Say $X \sim p$, and $X^{n}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \sim p^{\otimes n}$ are iid samples from $p$. Can I compress $X$ ?

To do so with 0 error we need $\lceil\log |\operatorname{supp}(p)|\rceil=\log \|p\|_{0}$ bits. To do so with $\epsilon$ error we need to throw away the smallest elements of $p$ up to weight $\epsilon$.

### 4.1.2.1 Shannon's Noiseless Coding Theorem

$X^{n} \sim p^{\otimes n}$, can compress to $n(H(X)+\delta)$ bits with error $\epsilon$ s.t. $\epsilon, \delta \rightarrow 0$ as $n \rightarrow \infty$.
The converse states that we can't do better. Compressing to $n(H(X)-\delta)$ bits means $\epsilon \rightarrow 1$.

Define a typical set:

$$
T_{p, \delta}^{n}=\left\{x^{n}=\left(x_{1}, \ldots, x_{n}\right),\left|-\frac{1}{n} \log p^{\otimes n}\left(x^{n}\right)-H(X)\right| \leq \delta\right\}
$$

Define $p^{\otimes n}\left(x^{n}\right)=p\left(x_{1}\right) p\left(x_{2}\right) \ldots p\left(x_{n}\right)$, then

$$
\log p^{\otimes n}\left(x^{n}\right)=\sum_{i=1}^{n} \log p\left(x_{i}\right) \rightarrow-n H(p)
$$

by the law of large numbers. This comes from the fact that

$$
E\left[\log p\left(x_{i}\right)\right]=\sum_{x_{i}} p\left(x_{i}\right) \log p\left(x_{i}\right)=-H(p)
$$

Thus by the law of large numbers, for all $\delta>0$,

$$
p^{\otimes n}\left(T_{p, \delta}^{n}\right) \rightarrow 1
$$

as $n \rightarrow \infty$. Specifically, for $x^{n} \in T_{p, \delta}^{n}$,

$$
\exp (-n(H(X)+\delta)) \leq p^{\otimes n}\left(x^{n}\right) \leq \exp (-n(H(X)-\delta))
$$

and

$$
p^{\otimes n}\left(T_{p, \delta}^{n}\right) \exp (n(H(X)-\delta)) \leq\left|T_{p, \delta}^{n}\right| \leq \exp (n(H(X)+\delta)
$$

where the upper bound is used in the coding theorem, and the lower bound is used in the converse. Thus the number of bits needed is

$$
\log \left|T_{p, \delta}^{n}\right| \leq n(H(X)+\delta)
$$

Next time we'll look at Shannon's noisy coding theorem.

