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4.1 Information Theory

Classical information theory

• Shannon entropy, typical sets, and compression

• Mutual information and noisy channel coding

• Relative entropy and hypothesis testing

Quantum information theory

• von Neumann entropy, Schumacher-Jozsa compression

• Mutual information and HSW coding

• Relative entropy and hypothesis testing

• Quantum capacity and LSD theorem

4.1.1 Entropy

For random variable X ∼ p:

H(X) = H(p) = −
∑
x

p(x) log p(x)

Quantifies uncertainty: for d the alphabet size of X,

0 ≤ H(X) ≤ log d,

where lower bound corresponds to deterministic p = (0, 0, 1, 0, 0), upper bounds corre-

sponds to uniform p = (1/d) · (1, 1, 1, 1, 1). Note 0 log 0 = 0.

4-1



Lecture 4: Sep 10, 2020 4-2

Note: `α norms work also, i.e.

‖p‖1+ε = 1− εH(p) +O(ε2)

But ‖p‖0, ‖p‖2, ‖p‖∞ also valid.

In the case of binary entropy, for Π ∈ [0, 1],

H2(Π) = H

(
Π

1− Π

)

4.1.1.1 Convexity Properties

Note that H(p) is concave:

H(Πp+ (1− Π)q) ≥ ΠH(p) + (1− Π)H(q)

This inequality is maximized by the uniform distribution. For example, assume that

(0.51, 0.49) maximizes entropy. Then (0.49, 0.51) also does. ButH(uniform) ≥ (1/2)H((0.51, 0.49))+

(1/2)H((0.49, 0.51)).

We can also consider the convexity/concavity properties of fidelity and trace dis-

tance. In particular, fidelity is jointly concave:

F (Πρ1 + (1− Π)ρ2,Πσ1 + (1− Π)σ2) ≥ ΠF (ρ1, σ1) + (1− Π)F (ρ2, σ2)

Trace distance is jointly convex:

T (Πρ1 + (1− Π)ρ2,Πσ1 + (1− Π)σ2) ≤ ΠT (ρ1, σ1) + (1− Π)T (ρ2, σ2)

To see why this is true, define

ρAB = Π |1〉 〈1| ⊗ ρ1 + (1− Π) |2〉 〈2| ⊗ ρ2
σAB = Π |1〉 〈1| ⊗ σ1 + (1− Π) |2〉 〈2| ⊗ σ2

Then use the fact that

F (ρ, σ) = ΠF (ρ1, σ1) + (1− Π)F (ρ2, σ2)

T (ρ, σ) = ΠT (ρ1, σ1) + (1− Π)T (ρ2, σ2)

to get the right hand side of the inequalities. The left hand side comes from

ρB = Πρ1 + (1− Π)ρ2

σB = Πσ1 + (1− Π)σ2



Lecture 4: Sep 10, 2020 4-3

4.1.1.2 Joint and Conditional Entropies

For X, Y ∼ p(x, y), define joint entropy

H(XY ) = H(p) = −
∑
xy

p(x, y) log p(x, y)

and conditional entropy

H(Y |X) =
∑
x

p(X = x)H(Y |X = x)

For a classical distribution pXY = Π1 |1〉 ⊗ p1 + Π2 |2〉 ⊗ p2,

H(Y |X = 1) = H(p1)

H(Y |X = 2) = H(p2)

⇒ H(Y |X) = Π1H(p1) + Π2H(p2)

Note that we can rewrite the conditional entropy as

H(Y |X) = −
∑
x

p(x)
∑
y

p(y|x) log p(y|x)

= −
∑
xy

p(x) · p(x, y)

p(x)
· log

p(x, y)

p(x)

= −
∑
xy

p(x, y) log p(x, y) +
∑
xy

p(x, y) log p(x)

= H(XY ) +
∑
x

p(x) log p(x)

H(Y |X) = H(XY )−H(X)

Note also that

H(Y |X) ≥ 0⇔ H(XY ) ≥ H(X)

although this is not always true quantumly. Also,

H(Y |X) ≤ H(Y )

This statement, that conditioning reduces entropy, is also true quantumly. Note that

it’s also equivalent to concavity of entropy since

H(Y |X) = Π1H(p1) + Π2H(p2)

H(Y ) = H(Π1p1 + Π2p2)
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4.1.2 Application: Compression

Say X ∼ p, and Xn = (x1, x2, ..., xn) ∼ p⊗n are iid samples from p. Can I compress

X?

To do so with 0 error we need dlog |supp(p)|e = log‖p‖0 bits. To do so with ε error

we need to throw away the smallest elements of p up to weight ε.

4.1.2.1 Shannon’s Noiseless Coding Theorem

Xn ∼ p⊗n, can compress to n(H(X) + δ) bits with error ε s.t. ε, δ → 0 as n→∞.

The converse states that we can’t do better. Compressing to n(H(X) − δ) bits

means ε→ 1.

Define a typical set:

T np,δ =

{
xn = (x1, ..., xn),

∣∣∣∣− 1

n
log p⊗n(xn)−H(X)

∣∣∣∣ ≤ δ

}
Define p⊗n(xn) = p(x1)p(x2)....p(xn), then

log p⊗n(xn) =
n∑
i=1

log p(xi)→ −nH(p)

by the law of large numbers. This comes from the fact that

E[log p(xi)] =
∑
xi

p(xi) log p(xi) = −H(p)

Thus by the law of large numbers, for all δ > 0,

p⊗n(T np,δ)→ 1

as n→∞. Specifically, for xn ∈ T np,δ,

exp(−n(H(X) + δ)) ≤ p⊗n(xn) ≤ exp(−n(H(X)− δ))

and

p⊗n(T np,δ) exp(n(H(X)− δ)) ≤ |T np,δ| ≤ exp(n(H(X) + δ)

where the upper bound is used in the coding theorem, and the lower bound is used in

the converse. Thus the number of bits needed is

log |T np,δ| ≤ n(H(X) + δ)

Next time we’ll look at Shannon’s noisy coding theorem.


