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5.1 Information Theory: Classical and Quantum

5.1.1 Noiseless Coding Theorem

5.1.1.1 Review

Today we will continue talking about information theory.

Recall that last time we defined the Shannon entropy as a measure of uncertainty

for the probability distribution p(x):

H(p) = −
∑
x

p(x) log p(x). (5.1)

Then we discussed an application of Shannon entropies to the problem of compres-

sion. Recall that we started by defining a typical set (also known as the ”asymptotic

equipartition property”), which is a set of strings with probability δ-close to a proba-

bility distribution p:

T np,δ =

{
xn = (x1, ..., xn) s.t.

∣∣∣∣− 1

n
log p⊗n(xn)−H(x)

∣∣∣∣ ≤ δ

}
. (5.2)

The probability of being non-typical, characterized by ε = 1− p⊗n(T np,δ), goes to zero,

as n→∞. In fact, ε ≤ nO(1)2−nδ.

5.1.1.2 Converse

Now, continuing from last time, let’s talk about the converse to the Shannon coding

theorem: Let’s say that we compress to k bits, and we assume that there exists a set

S that is decoded correctly. Note that by definition |S| ≤ 2k. Then the probability of

correctly decoding is

pn(S) ≤ pn(T np,δ ∩ S) + pn(T np,δ) ≤ 2k2−nH(p)+nδ + ε (5.3)
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Note that the right hand side is a small number if k ≤ n(H(p) − δ). In this argu-

ment we assumed deterministic coding and encoding, but what if Alice and Bob share

randomness? We’ll claim that even with the shared randomness, the bound still holds.

Note that with shared randomness, we have a diagram that looks something like

the following:

Note that we can condition on the shared randomness r, reducing it to the deter-

ministic case, and then sum over r,

P (xn = (̂x)n|r) ≤ ε′, (5.4)

so shared randomness should not change our results.

5.1.2 Quantum Entropy and Compression

5.1.2.1 Quantum Entropies

In the quantum case, we can define the von Neumann entropy,

S(ρ) = H(eig(ρ)) = −tr[ρ log ρ]. (5.5)

It is zero if and only if ρ is a pure state:

S(ρ) = 0⇔ eig(ρ) = (1, 0, ..., 0)⇔ ρ = |ψ >< ψ|. (5.6)

It attains its maximum when ρ is maximally mixed. Letting d = dim(ρ),

S(ρ) ≤ log d (5.7)

S(ρ) = log d⇔ ρ = I/d. (5.8)

We can generalize all of our classical entropies to the quantum case described by
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density matrix ρXY :

S(X) = S(ρX) (5.9)

S(X|Y ) = S(XY )− S(Y ) (5.10)

I(X : Y ) = S(X) + S(Y )− S(XY ) (5.11)

D(ρ||σ) = trρ[log ρ− log σ] (5.12)

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
(5.13)

Note that again S(X|Y ) ≤ S(X), which allows us to derive concavity of entropy. A

good question to ask is how we should actually interpret the quantity S(X|Y ). For

example, for the state

|ψ〉 = (|00〉+ |11〉)/
√

2,

how would we actually condition on the state of the second system? This isn’t so

clear! Note, also that the conditional entropy in the quantum case can be negative.

An example is again the Bell state, where S(XY )ψ = 0, S(Y )ψ = 1, S(X|Y ) = −1.

Now let’s extend the notion of typical sets. Say we have the state

ρ =
∑
x

λx |vx〉 〈vx| ,

where the |vx〉’s are orthonormal. Then we can define a typical projector

Πn
p,δ =

∑
xn∈Tλ,δ

|vxn〉 〈vxn| .

Here

|vxn〉 = |vx1〉 ⊗ ...⊗ |vxn〉 .

This results in

ρ⊗n =
∑
xn

λx1 ...λxn |vxn〉 〈vxn|

Note that this projector projects to the typical subspace. The projection measurement

{Πn
p,δ, I − Πn

p,δ} has resulting probability

tr[ρ⊗nΠn
p,δ] =

∑
xn

λx1 ...λxn1xn∈Tnλ,δ = λn(T nλ,δ) (5.14)

Note that this approaches 1 as n→∞.

Note that we would like to discuss compressing unknown ρ for qubits with known

S(ρ). If ρ is known, then we can use a classical compression scheme working in the

eigenbasis |v1〉,...,|vd〉.
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5.1.2.2 Efficient Classical Compression

Now let’s look at an example of an efficient classical compression scheme, specif-

ically Huffman encoding.

For an example case, suppose we have 4 symbols, with probabilities given in the

second column below. Then we can assign a code using the third column below:

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111

Note that this encoding encodes x with dlog 1/p(x)e bits, and that this is always

possible. Note also that this encoding is prefix-free. If the probabilities are not powers

of 1/2, we can use block coding, i.e. by expanding our code to include multiple bits in

a block. In our example, we would take the codewords to be blocks AA,AB,BB, etc.

Then this allows us to assign probabilities to each block that are closer to powers of

1/2.

5.1.2.3 Quantum compression

We start off by asking the question, what does it mean to compress ρ? Here are some

possible answers:

1.

with F (ρ⊗n, σ) ≈ 1.

2.
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with Exn∼λ[F (|vxn〉 〈vxn| , σ)] ≈ 1.

3. Letting ρ =
∑

i pi |wi〉 〈wi|, where the |wi〉 are not necessarily orthonormal,

with Ein∼ρ[F (|win〉 , σ) ≈ 1].

4. Letting |φρ〉AR be a purification such that φρA = ρ,

with F (|φρ〉⊗n , σ) ≈ 1.

Note that the first scheme doesn’t work because it allows for the possibility where

you input the maximally mixed state and produce the output by just throwing away the

input state and always outputting the maximally mixed state. The classical equivalent

would be a source that always emits the uniform distribution, and an encoding scheme

that throws away the acutal message and just returns the uniform distribution.

The second to fourth options are roughly the same, and give us Schumacher

Jozsa compression. Formally, the way this works is the following: Say we have

state ρ⊗n. Apply {Πn
p,δ, I − Πn

p,δ}, where the first result is successful and the second

is a failure. If this is successful, the state is contained in a subspace of dimension

trΠn
p,δ ≤ exp(n(S(ρ) + δ) = exp(nH(λ) + δ). Thus it fits into n(S(ρ) + δ) qubits.

An application of this is to algorithmic cooling, where our states (representing, for

example, nuclear spins in large magnetic fields) are of the form ρ⊗n with

ρ =

(
1+ε
2

0

0 1−ε
2

)
.


