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6.1 Relative Entropy

In the previous lectures, we introduced information entropy. An alternative interpre-

tation of entropy is as “average surprise”. In our daily experience, a more likely event

contains less information and brings us less surprise. For example, if the weather fore-

cast said there would be 90% probability of raining and it rains, we would not be very

surprised. If it said 10% and rains, we would be more surprised. It is similar for the

events in Huffman coding. We would be more surprised when an event with probability

2−10 appears than when one with 2−1 does. Huffman coding offers us a quantification

of surprise. Given n bits, we can identify one of 2n events each with probability 2−n.

This suggests that an event with probability p(x) need log 1
p(x)

bits.

We can define

surprise(x) ≡ log
1

p(x)
(6.1)

and therefore the “average surprise”

E[surprise(x)] =
∑
x

p(x) log
1

p(x)
= H(p) (6.2)

Also in Huffman coding, x uses dsurprise(x)e bits. That’s how entropy as “average

surprise” measures information.

In the previous example of Huffman coding, we have assumed that we know the

true distribution of the events and encode them accordingly. What if we use the wrong

distribution (i.e. x ∼ p, but we encode according to q)? For example, we compress

a piece of text by encoding the letters according to their appearance probability in

English, but actually the text is written in French. In such cases, we cannot have

optimal compression. The compressed message is longer than the one encoded with

the correct distribution. The message length
∑

x p(x) log 1
q(x)
≥
∑

x p(x) log 1
p(x)

.

The excess, denoted D(p||q) is known as the relative entropy or Kullback-Leibler

divergence

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
(6.3)

6-1
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The relative entropy is always non-negative. One can see this roughly by noting

that Shannon’s coding theorem implies that we cannot compress a source beyond its

entropy, and therefore the excess must be ≥ 0. However, this conclusion is not obvious

from viewing the formula. Unlike in the definition of entropy where every term is non-

negative, here the terms have mixed signs, being non-negative on the support where

p(x) ≥ q(x), and negative otherwise. The non-negativity of relative entropy comes

from the positive terms outweighing the negative ones.

Showing this more rigorously, we make use of the fact that

1 + z ≤ ez,

which can be shown from the convexity of f(z) = ez − (z + 1), and f(0) = f ′(0) = 0.

Replacing z by log y, we get the equivalent forms

log y ≤ y − 1

log
1

y
≥ 1− y.

Applying this inequality,

D(p||q) =
∑
x

p(x) log
p(x)

q(x)

≥
∑
x

p(x)

(
1− q(x)

p(x)

)
=
∑
x

p(x)− q(x) = 0,

in the last step we used
∑

x p(x) =
∑

x q(x) = 1.

From the definition of relative entropy, we can see that it is zero when p = q. Are

there any other cases? Tracing through the derivation of non-negativity, the inequality

is tight only at one point, z = 0, equivalently y = 1 or p(x) = q(x). A little tricky

point is that at the terms with p(x) = 0, the inequality may also be tight, as those

terms are zero. However,
∑

x p(x) =
∑

x q(x) = 1 forces q(x) to be 0 when p(x) = 0,

given p(x) = q(x) when p(x) 6= 0.

Therefore, D(p||q) = 0 if and only if p = q.

Another note is that although the relative entropy describes the difference between

two distributions, it is not a true distance in a metric sense – it is neither symmetric,

D(p||q) 6= D(q||p), nor satisfying the triangular inequality.
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6.1.1 Corollary: Subadditivity of entropy

Using the non-negativity of relative entropy, we can prove the subadditivity of informa-

tion entropy. Consider a joint distribution pXY , and the direct product of its marginals,

pX ⊗ pY . We calculate the relative entropy between them, and we can group the terms

in different ways.

D(pXY ||pX ⊗ pY ) =
∑
x,y

p(x, y) (log p(x, y)− log pX(x)− log pY (y))

= −H(XY ) +H(X) +H(Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

≡ I(X : Y ) ≥ 0.

The second line tells us the subadditivity of entropy, i.e. H(X) +H(Y ) ≥ H(XY ).

The third and fourth lines tell us conditioning on other systems will decrease the

entropy, i.e. H(X) ≥ H(X|Y ) and H(Y ) ≥ H(Y |X).

In the last line we introduce a new quantity I(X : Y ), known as the mutual infor-

mation. It describes the correlation of X and Y in a joint distribution pXY . The mutual

information I(X : Y ) = 0 if and only if X and Y are independent, i.e. pXY = pX ⊗ pY .

6.1.2 Corollary: Uniform distribution has largest entropy

We can also use the non-negativity of relative entropy to show that the uniform distri-

bution has the largest entropy. Consider the special case of a distribution p with the

uniform distribution u =
(
1
d
, 1
d
, . . . , 1

d

)
on d outcomes,

D(p||u) =
∑
x

p(x)

(
log p(x)− log

1

d

)
= log d−H(p) ≥ 0.

It tells us H(p) ≤ log d, and this maximum is reached if and only if p = u.

6.2 Hypothesis testing

The key application to understand information entropy is the message compression.

We will see in this section that the key application for the relative entropy is the
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hypothesis testing.

In a hypothesis testing, we are given several hypotheses of distributions and a

sample of data. We would like to find out which distribution the sample comes from.

When two hypotheses are given, it is called binary hypothesis testing. When there are

more than two hypotheses, it is multiple hypothesis testing. Here we only talk about

binary hypothesis testing.

Suppose we get x sampled from p or q and want to guess which distribution x comes

from. There are two kind of errors we can make – x sampled from p but we guess q

(type 1), or x sampled from q but we guess p (type 2). We define the probability of

these two types of errors as

α = Pr[guess q|x ∼ p] (type 1)

β = Pr[guess p|x ∼ q] (type 2) .

We want to do the hypothesis testing that can minimize these errors. There are

several ways to formulate the problem

1. Symmetric hypothesis testing: minimize α + β. Answer is ‖p− q‖.

2. Bayesian hypothesis testing: minimize πα+ (1− π)β. Answer on problem set 1.

3. Asymmetric hypothesis testing: minimize β such that α ≤ ε. Minimum is βε.

As usual in the information theory, we consider the asymptotic case of n-copies with

n → ∞. Intuitively, with more samples in hand, we can distinguish the distributions

better. When we cap α by a fixed value, β should decrease exponentially with n. The

question left is the coefficient in front of n in the exponent, and the answer is the

relative entropy.

Define βnε to be the minimum of type-2 error for the binary hypothesis testing

between p⊗n and q⊗n. We expect limn→∞ β
n
ε ∼ exp (−nD(p||q)). Formally, we have

the following theorem.

Theorem 5 (Chernoff-Stein’s Lemma)

lim
n→∞

− 1

n
log βnε = D(p||q), ∀ε ∈ (0, 1). (6.1)

We will not give a proof here. Instead, let’s see some examples.
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1. p = q ⇐⇒ D(p||q) = 0. It is obvious that we cannot distinguish two distribu-

tions when they are identical. On the other direction, when two distributions are

different, no matter how they are alike, we can do the hypothesis testing with

exponentially small error given large enough number of samples.

2. q is the uniform distribution u. D(p||u) = log d−H(p). We can do the following

hypothesis testing. If the samples are in the typical set of p, i.e. xn ∈ T np,δ,

we guess p, otherwise we guess q. The appearance of the type-1 error is when

p generate samples outside the typical set. From the property of the typical

set, we know the probability of type-1 error is α = 1 − p⊗n(T np,δ) → 0, for all

δ ≥ 0. The appearance of the type-2 error is when the samples generated from

the uniform distribution happen to be in the typical set. The probability is

β =
|Tnp,δ |
dn
≤ exp (n (H(p) + δ)− n log d) ≤ exp (−n (D(p||u)− δ)). The minimal

error must be small than this, i.e. βnε ≤ β ≤ exp (−n (D(p||u)− δ)). We can

smoothly reach the bound stated in the theorem by making δ slowly goes to zero.

3. D(p||q) =∞. From the definition of the relative entropy, this occurs when there

is an element x such that p(x) 6= 0 and q(x) = 0, i.e. when supp(p)−supp(q) 6= ∅.

We can do the following hypothesis testing. If an element in supp(p) − supp(q)

is seen, we guess p, otherwise we guess q. The type-1 error appears when those

elements happen not to be seen, which occurs with probability that decreases

exponentially. Note that we can always guess p with certainty. Therefore, the

probability of the type-2 error β = 0.

6.3 Quantum relative entropy

Now let’s consider the quantum case. Unlike in the classical case where we can divide

two probability distributions, the quantum analog of the relative entropy is defined as

follows:

D(ρ||σ) ≡ tr [ρ log ρ− ρ log σ] = tr [ρ (log ρ− log σ)] (6.1)

There isD(ρ||σ) ≥ 0. A consequence of this is that the quantum mutual information

I(X : Y ) ≡ D(ρXY ||ρX ⊗ ρY ) ≥ 0 is still non-negative by the same arguments as in

the classical case.

We have a similar theorem for the binary hypothesis testing in the quantum case.

Theorem 6 (Quantum Stein’s lemma) Given ρ⊗n, σ⊗n. For any possible two-

outcome measurement {M, 1 − M}, define the minimal type-2 error given a capped
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type-1 error

βnε = min
{

tr[Mσ⊗n] | ∀M s. t. tr[Mρ⊗n] ≥ 1− ε
}
.

The following limit holds

lim
n→∞

− 1

n
log βnε = D(ρ||σ).

We will not give a proof here. Instead, we consider the special case D(ρ||σ) = ∞.

This time there is no clear meaning of probability on an element as in the classical

case. Instead, the support is defined as the span of all eigenvectors. In the quantum

case, D(ρ||σ) =∞ ⇐⇒ supp ρ 6⊆ suppσ.

When ρ and σ are pure states, e.g. ρ = |ψ〉 〈ψ| and σ = |φ〉 〈φ|. The support of

ρ is {|ψ〉} and the support of σ is {|φ〉}. This implies that D(ρ||σ) = 0 for identical

pure states, or D(ρ||σ) = ∞ otherwise. Therefore, the relative entropy is not a well

description for the difference between two pure states.

The optimal measurement in this case, is to choose M = |ψ⊥〉 〈ψ⊥| and 1−M . Note

that the optimal measurement is not parallel to the state, but instead perpendicular.

With this measurement we can rule out one of the hypothesis definitely. The proof is

similar as in the classical case.

6.3.1 Quantum versus classical entropies, Conditional mutual

information

Here are some properties of the quantum entropy

1. 0 ≤ S(X) ≤ log d with equality on the lower bound only for pure states and

equality for the upper bound only for the maximally mixed state I/d.

2. 0 6≤ S(X|Y ) ≤ S(X). the non-negativity of the conditional entropy only holds

in the classical case.

3. D(ρ||σ) ≥ 0

4. I(X : Y ) ≥ 0

There is another quantity we have not yet introduced in this family. The condi-

tional mutual information is the amount of mutual information conditioned on another

random variable. It combines the idea of conditional entropy and mutual information.



Lecture 6: Sep 17, 2020 6-7

Classically,

I(X : Y |Z) =
∑
z

pz(z)I(X : Y )p(·,·|z) ≥ 0 (6.2)

and I(X : Y |Z) ≥ 0 follows directly from subadditivity. The following equivalent

definitions hold in both the classical and quantum cases

I(X : Y |Z) = H(X|Z) +H(Y |Z)−H(XY |Z)

= H(XZ)−H(Z) +H(Y Z)−H(Z)−H(XY Z) +H(Z)

= H(XZ) +H(Y Z)−H(XY Z)−H(Z)

= I(X : Y Z)− I(X : Z).

In the quantum case, it is still true that I(X : Y |Z) ≥ 0 but does not follow obvi-

ously from subadditivity. This property is known as the “strong subadditivity (SSA) of

quantum entropy”. The proof is far more complicated than in the classical case.

However, the relation between I(X : Y |Z) and I(X : Y ) is not definite. It can be

“≥”, “=”, or “≤”. For example, if Z describe the noise that is added on both X and

Y , conditioning on the noise can increase the mutual information between the signals.

On the other hand, it is also possible that Z exactly determines X and Y . In this case,

the conditional mutual information equals zero.


