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7.1 Noisy Channel Coding

7.1.1 Classical noisy channels

X N Y

We would like to study communication in a realistic setting where the medium over

which messages are transmitted can (partially) corrupt the signal. We model a classical

noisy channel N as a mapping between random variables X to Y , N(y|x),

pY (y) = pX(x)N(y|x)

This leads to a natural question: what is the largest amount of information that can

be communicated per use of a given channel N? This quantity, known as the channel

capacity, is defined as the highest rate of reliable communication that can be achieved,

measured in bits per channel use, over all possible coding strategy; reliability in this

case refers to the probability of error ε→ 0 in the asymptotic data limit n→∞.

Mathmatically,

C(N) ≡ lim
ε→0

lim
n→∞

1

n
logM∗ (7.1)

where

M∗ = max
{
M : ∃E : [M ]→ Xn,∃D : Y n → [M ], s.t.∀m,Pr[m = D(N⊗n(E(m)))] ≥ 1− ε

}
(7.2)

where the notation [M ] ≡ {1, 2, . . . ,M}.

Shannon’s noisy coding theorem provides the answer in simple expression:

C(N) = max
px

I(X : Y )p (7.3)

where p(x, y) = pX(x)N(y|x)

7-1
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Here the p is the joint input-output distribution. We can understand the mutual

information in number of equivalent ways:

I(X;Y ) = H(X)−H(X|Y )

The first interpretation of the mutual information is as the amount of information in

the random variable X less the amount of uncertainty in X that still remains after

observing the, potentially (partially) corrupted Y

I(X;Y ) = H(Y )−H(Y |X)

Another interpretation is as the amount of information carried in the observed Y less

the randomness in Y that carries no information about X (i.e. the noise injected by

the channel).

I(X;Y ) = D(pXY ||pX ⊗ pY )

Yet another interpretation is as the relative entropy between the correlated joint dis-

tribution pXY and the independent product of the marginals pX ⊗ pY

7.1.1.1 Example: Binary Symmetric Channel (BSC)

0 0

1 1

1− π

π

π

1− π

A commonly studied noisy channel model is the binary symmetric channel (BSC).

The BSC has binary inputs and outputs with a probability π of the sent bit being

flipped. That is the output

Y = X ⊕ e, e =

{
0, w/ prob. 1− π
1, w/ prob. π

The Shannon limit defined in Equation 7.3, for the BSC is C(NBSC) = 1−H2(π);

where H2(π) is the known as the binary entropy function

H2(π) ≡ −π log π − (1− π) log(1− π)

we can see this by noting that the entropy is a concave function of pX and is symmetric

about the mid-point π = 1
2

and is therefore maximized for pX =
(
1
2
, 1
2

)
(also note that
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pY =
(
1
2
, 1
2

)
). From this, we can obtain the joint distribution

p =
1

2

(
1− π π

π 1− π

)
where we write the joint distribution p in the form of a 2× 2 matrix.

Intuitively, this appears to be the best possible rate since, by correctly decoding the

output Y , one obtains all of the information that has been input: one bit of information

corresponding to the sum of the entropy of X as well as the entropy of the noise e.

7.1.1.2 Example: Erasure Channel

0 0

1 1

⊥

1− π
π

π

1− π

Another commonly studied channel is the erasure channel where a bit is lost with

probability π. By the same argument as above, the maximum of Equation 7.3 is again

attained for pX =
(
1
2
, 1
2

)
.

Here we have H(Y |X) = H2(π) and H(Y ) = 1−π+H2(π) giving a channel capacity

C(NERASURE) = 1− π.

Once again, this appears to be the best possible rate. One can imagine a protocol

where Alice communicates to Bob using the channel NERASURE and Bob has a noiseless

channel to Alice that can be used to confirm the reception of a bit or the loss of a bit.

In the case that Bob loses the bit, he communicates this noiselessly to Alice asking for

her to send it again. This occurs with rate 1 − π. This appears to be the best-case

scenario as it requires access to an unphysical noiseless channel; and it is somewhat

surprising that the channel capacity saturates the upper-bound given by this idealized

scenario.

7.1.1.3 Example: Gaussian Noise Channel

A common model for analog communication is that of the Gaussian noise channel.

For concreteness, consider xn ∈ Rn and e ∼ N (0, σ2). Finding the channel capacity

in this case is close to the problem of sphere packing – especially as the Gaussian balls
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become less ‘fuzzy’ in high dimensions. Note here that Bob learns yn and also gets xn

if decoding works, and then therefore reconstruct the noise en.

7.1.1.4 Is the channel capacity achievable?

From the examples above, it seems clear that the channel capacities in these cases are

as high as one could expect; however, it is not immediately clear that we can find an

encoding scheme that achieves the channel capacity.

Consider using the repetition code over the BSC: encode 0 7→ 0k, 1 7→ 1k, and

the error rate Pr[error] ∼ e−O(k) – this can be shown more rigorously using Chernoff

bounds.

Consider the case where Alice would like to send a message of length l, with each

bit encoded by a k-fold repetition. The total length is n = kl. The error rate per

encoded bit goes as e−k. To reliably transmit the entire message, we require the error

rate per block to be less than 1/l corresponding to a choice of k ∼ log l. This gives

a rate of R ∼ 1
logn

showing that as n → ∞, the rate of this encoding scheme goes to

zero. We will need to be more clever if we are to achieve the channel capacity.

7.1.2 Proof of Shannon’s Noisy-Channel Coding Theorem

Now we will prove that the channel capacity defined in Equation 7.3 is achievable by

providing constructing a suitable encoding scheme.

First we define the jointly typical set Jnp,δ as follows:

Jnp,δ ≡
{

(xn, yn) : (x1y1, . . . , xnyn) ∈ T npXY ,δ
, (x1, . . . , xn) ∈ T npX ,δ, (y1, . . . , yn) ∈ T npY ,δ,

}
(7.4)

that is the Jnp,δ is the set of length n pairs of (xn, yn) such that xn is typical with

respect to pX , yn is typical with respect to pY and (xn, yn) is typical with respect to

pXY simultaneously.

From the results on the typical set, we have the following properties of strings in

the jointly typical set

pnXY (xn, yn) ≈ exp (−nH(XY ))

pnX(xn) ≈ exp (−nH(X))

pnY (yn) ≈ exp (−nH(Y ))

and pnXY (Jnp,δ)→ 1 as n→∞.
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In encoding process, we have a random codebook, C = {E(1), · · · , E(M)}, where

M = |C| = 2nR, and R is the rate. Each E(m) is drawn independently from p⊗nx . To

decode, we perform joint typicality decoding : given output yn = N(xn), D(yn) = m̂

s.t. (E(m̂), yn) ∈ Jnp,δ. This can fail if

1. m̂ does not exist, or

2. ∃m̂ 6= m satisfying (E(m′), yn) ∈ J .

We now show that both of these are unlikely for R ≤ C(N). Consider uniform dis-

tributed m ∈ [M ]:

Pr[(E(m̂), yn)︸ ︷︷ ︸
∼p⊗n

xy

∈ Jnp,δ] = p⊗nxy (Jnp,δ)→ 1 as n→∞

demonstrating that the first failure mode is unlikely.

Since E(m) and E(m′) are independent, E(m′) and yn are independently dis-

tributed, therefore for a fixed m′,

Pr[m′ 6= m ∩ (E(m′)︸ ︷︷ ︸
∼pnx

, yn︸︷︷︸
∼pny

) ∈ Jnp,δ] = (pnx ⊗ pny )(Jnp,δ).

Since pn(xn, yn) ≥ exp (−nH(XY )− nδ), we have |Jnp,δ| ≤ exp (nH(XY ) + nδ),

and therefore the r.h.s is

(pnx ⊗ pny )(Jnp,δ) ≤ |Jnp,δ|max pnx max pny

= exp (−nH(X) + nδ) exp (−nH(Y ) + nδ) exp (nH(XY ) + nδ)

= exp (−nI(X : Y ) + 3nδ)

for a fixed m′.

For all m′,

Pr[∃m′ 6=ms.t.(E(m′), yn) ∈ Jnp,δ] ≤M(pnx ⊗ pny )(Jnp,δ) ≤ exp(nR− nI(X;Y ) + 3nδ)

which → 0 when R < I(X : Y )− 3δ.

Note that this provides an another interpretation of the mutual information I(X;Y ).

Although we have proven the achievability of the Shannon limit, the use of random

codebook and joint typicality decoding is quite messy. Next class we’re going to get

rid of the random codebook and random message.
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7.2 Quantum analogues

7.2.1 CQ channel capacity

Consider classical input, quantum ouput or CQ channel N . This can be thought of

a channel that takes as input a number x ∈ [M ] and outputs a quantum state ρx; it

can also be thought of as a channel that takes a quantum state σ but immediately

decoheres it:

N(σ) =
∑
x

〈x|σ|x〉 ρx

What is the classical capacity of this? The answer to this is given by the Holevo-

Schumacher-Westmoreland (HSW) theorem:

C(N) = max
p
I(X;Q)ω (7.1)

where ωXQ =
∑

x p(x)|x〉〈x|X ⊗ ρQX ; and the CQ joint entropy is

S(XQ) = −tr

[
ωXQ

∑
x

|x〉 〈x| ⊗ (log p(x)I + log ρx)

]
= H(p) +

∑
x

pxS(ρx) = H(X) +H(Q|X)

and the CQ mutual information is

I(X;Q) = H(Q)−H(Q|X)

= S

(∑
x

p(x)ρx

)
−
∑
x

p(x)S(ρx) = χ

7.2.1.1 Example: simple application of the HSW theorem

Consider qubit states ρi = |vi〉 〈vi| for i ∈ {1, 2, 3}. Assume that they related by 2π
3

rotation so that 1
3
(ρ1+ρ2+ρ3) = I2/2. In this case, the ρi are pure states and therefore

S(ρi) = 0 giving S = 1 and χ = I(X;Q) = 1. This means that we can reliably transmit

1 bit of information per use of the channel. This would be clear if the output states

were orthogonal such as |0〉 〈0| and |1〉 〈1|, but is not as obvious in this case where the

output states are not orthogonal.

7.2.2 Quantum joint typicality

The quantum analogue for typical sets are projectors into jointly typical subspaces:

TX 7→ ΠX , TY 7→ ΠY , and TXY 7→ ΠXY . The problem, however, is that these projectors
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do not commute in general and therefore we cannot directly define joint typicality.

To get around this, we can first purify the state ρXY 7→ |ψ〉XY Z and consider ΠZ

which should be fine as the projectors have the same spectrum. Another way is to

consider quantities of the form ΠXY ΠXρ
⊗nΠXΠXY although one needs to be careful

of the ordering of the operators. This will be expanded on in the next lectures as we

prove the HSW theorem.


