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8.1 Shannon’s Noisy Coding Theorem (cont)

Last class’s proof we have two key features of Shannon’s noisy coding theorem are

random encoding and jointly typical decoding. The probability of error averaged over

all the messages m, codebook C, and actions of the channel Nn is small.

Pr
m,C,Nn

[error] ≤ ε

The average is always greater than minimum, and therefore the LHS, i.e., the

expectation value over C of the probability of error given the choice of C is greater

than the minimum over C of the probability of error.

E
C

[
Pr
m,Nn

[error|C]

]
≥ min

C
Pr
m,Nn

[error]

Fix the codebook C to be the one with minimum probability of error, but here we

want it works for all message rather than some particular ones. In this case we can use

the Markov’s inequality, i.e. given a non negative random variable X, the probability

to have X ≥ a is:

Pr[X ≥ a] ≤ E(X)

a

Applying the Markov’s inequality for a = 2ε, we have:

Pr
m

[Pr
Nn

[error|m] ≥ 2ε] ≤ Pr
m

[ E
Nn

([error|m])

2ε

]
≤ 1

2

Let’s say the messages with Pr
Nn

[error|m] ≥ 2ε are bad messages, then based on

Markov’s inequality, at most half of the messages are bad. But because the number of

messages is exponential the number of channels, so it’s no big deal to get rid of half of

the bad messages (“expurgation”).

The reduced codebook now will have at least half the size of the original codebook.

For all the message m in Creduced, we have Pr
Nn

[error|m] ≤ 2ε

8-1
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8.1.1 Proof intuition of the theorem

pnY

size: 2nH(Y )

size: 2nH(Y |X)pnY (yn|xn)

for fixed &
typical xn

Bob receives strings from p⊗nY , i.e. pnY for classical case. The typical set of those

has the size 2nH(Y ).

For any given message analysis, i.e. fixed typical Xn, then over a small subset we

have the distribution pnY (yn|xn). The size of that subset is 2nH(Y |X).

Why is that? For frequency typical, the number of x appear in xn is approximately

equal to npx(x). Suppose they are equal. For a string xn, we have:

pnY (yn|xn) = p(y1|x1)p(y2|x2)...p(yn|xn)

We expect yn to have:

npx(x1) positions in the typical subspace T np(·|x1),δ

npx(x2) positions in the typical subspace T np(·|x2),δ

Then we can group all the p with same x together and have (but neglecting the δ

stuffs just to provide intuitions):

pnY (yn|xn) =
∏
x

exp[−npx(x)H(p(·|x))]

= exp

[
−n
∑
x

px(x)H(p(·|x))

]
= exp(−nH(Y |X))



Lecture 8: Sep 24, 2020 8-3

If every string in subset has that probability, then the size of strings in the subset

is roughly 2nH(Y |X).

8.2 Converse of the Noisy Coding Theorem

8.2.1 Properties of entropy

• If X is deterministic (for quantum, ρ is pure), then H(X) = 0.

• If Y is completely determined by X, i.e Y = f(X), then H(Y |X) = 0.

• If X and Y are independent, i.e p(X, Y ) = px(X)py(Y ) (for quantum, ρxy =

ρx ⊗ ρy), then I(X : Y ) = 0.

• Conditional mutual information (CMI): If X − Z − Y is a Markov chain, i.e

p(x, y, z) = pZ(z)p(x|z)p(y|z), then I(X : Y |Z) = 0.

8.2.2 Properties of CMI

• Chain rule: I(X : Y Z) = I(X : Y ) + I(X : Z|Y )

Proof: If we denote H(α) as α where α could be single or joint distribution and

could also be conditional. Then we expand:

LHS = X −X|Y Z = X −XY Z + Y Z

RHS = (X −X|Y ) + (X|Y + Z|Y −XZ|Y )

= (X −XY + Y ) + (XY − Y + Y Z − Y −XY Z + Y )

= X + Y Z −XY Z

LHS and RHS are equal, thus the chain rule is proved.

• Generalized chain rule:

I(X : Y1...Yn) = I(X : Y1) + I(X : Y2|Y1) + ...+ I(X : Yn|Y1...Yn−1)

• Data processing inequality: If X − Z − Y is a Markov chain, then as we move

along the Markov chain, that should only degrade the mutual information, i.e

I(X : Z) ≥ I(X : Y )
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Proof: Applying the chain rule above, we have:

I(X : Z) = I(X : Y Z)− I(X : Y |Z)

I(X : Y ) = I(X : Y Z)− I(X : Z|Y )

Take the difference on both sides of two equations:

I(X : Z)− I(X : Y ) = −I(X : Y |Z) + I(X : Z|Y )

= I(X : Z|Y ) ≥ 0

In the second line, we used the property of Markov chain I(X : Y |Z) = 0. Thus

I(X : Z) ≥ I(X : Y ).

All of the above properties are true quantumly as well.

8.2.3 Converse of the Noisy Coding Theorem

M M̂

X1

X2

Xn

Y1

Y2

Yn

... ...

If the noisy coding theorem says that we can send nR bits and R can get right up

to the mutual information, the converse theorem says that we cannot do much better

than that.

Consider a most general possible coding scheme: Alice sends message M , encodes

it and inputs to the channels Xn. The input channels are mapped to output channels

Y n. Bob gets the outputs and decodes M̂ . i.e Markov chain M −Xn − Y n − M̂ . We

assume M is uniformly distributed in {0, 1}nR, then H(M) = nR. Note that here we

choose the uniform distribution here just for simplicity, and the theorem should apply

to all possible distributions.

8.2.3.1 Fano’s inequality

Obviously, the conditional entropy for M based on M̂ is small because for most cases

they’re equal, and similarly the mutual information between them is high. Quantita-
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tively, we have the Fano’s inequality says:

H(M |M̂) ≤ εnR + 1

→ I(M : M̂) = H(M)−H(M |M̂) ≥ (1− ε)nR− 1

Proof:

If the alphabet has size d, which in our real applications it’s nR. And suppose that

the probability of one element p(m) ≥ 1 − ε, which corresponds to M = M̂ in the

above scenario. Then the entropy H(p) ≤ 1 + ε log d.

We name the p(m) = 1 − δ, δ ≤ ε. Rewrite the distribution p = (1 − δ)1m + δq,

where q is another distribution which satisfies q(m) = 0. Then, the entropy can be

rewritten as a sum of entropy of mixing being m or not being m, and the entropy of

the rest components:

H(p) = −(1− δ) log(1− δ)−
∑
x

δq(x) log δq(x)

= −(1− δ) log(1− δ)− δ log δ − δ
∑
x

q(x) log q(x)

= H2(δ) + δH(q)

≤ 1 + δ log d

Fannes’ inequality (generalized version of Fano’s inequality): If p, q are distributions

on alphabet of size d, then

|H(p)−H(q)| ≤ H2(ε) + ε log d

ε =
1

2
||p− q||1

Where in the quantum version of we just replace H by S and p, q by the density

matrix.

8.2.3.2 Proof of converse theorem

Here we want to relate the above inequality to channels to work with Shannon’s theo-

rem:

(1− ε)nR− 1 ≤︸︷︷︸
Fano’s inequality

I(M : M̂)

data processing worsen information

in Markov chain M −X − Y − M̂︷︸︸︷
≤ I(Xn : Y n) ≤︸︷︷︸

F

n∑
j=1

I(Xj : Yj) ≤ nC

→ R ≤ C

1− ε

(8.1)
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The second inequality results from data processing: in the Markov’s chain, the

mutual information of two ends is less than or equal to the mutual information of the

middles.

The last inequality: the mutual information of each input-output channels pair is

at most C (the mutual information obtained by maximizing over all the inputs).

The third inequality is a little bit unique because basically all other properties we

mentioned in this section can be naturally generalized to quantum cases but this one

not1. The major difference happens when the input has quantum entanglement. The

reason we will mention the quantum capacity theorem in CQ channels in Sec. 7.2.1 is

specifically to avoid such things to happen.

Now we try to prove (F) in classical regime. The mutual information is I(Xn :

Y n) = H(Y n)−H(Y n|Xn). Because there is no correlation between different pairs of

input-output channels, using chain rule, we have:

H(Y n|Xn) =
n∑
j=1

H(Yj|XnY1...Yj−1)

=
n∑
j=1

H(Yj|Xj),

where the last equality is based on the fact that the Markov chain only connects directly

related pairs, so once condition on Xj, the Yj becomes conditionally independent on

everything else. One can imagine that this fails quantumly when different Xj are

entangled and therefore can all contribute to Yj.

The entropy of the sum is less than sum of the entropies of the part, i.e., the

sub-additivity of entropy, so we have:

H(Y n) ≤
n∑
j=1

H(Yj)

1The conditional entropy, however, is also different in quantum since it can go to negative and

therefore being equal to 0 does not have unique properties. The CMI and the corresponding Markov

chain state can be generalized to quantum Markov states which we will revisit later, but in short the

chain rule holds in quantum cases.
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Thus,

I(Xn : Y n) = H(Y n)−H(Y n|Xn)

≤
n∑
j=1

H(Yj)−
n∑
j=1

H(Yj|Xj)

≤
n∑
j=1

I(Xj : Yj)

8.3 Quantum Capacity Theorem

Idea: Find achievability via Packing Lemma

Example: Suppose that Alice has a menu of pure states as output |0〉 , |1〉 , |+〉 , |−〉
to send

• Can send 1 classical bit (0→ |0〉 and 1→ |1〉) or (0→ |+〉 and 1→ |−〉)

• Can send 2 classical bits (00→ |0〉, 01→ |+〉, 10→ |−〉 and 11→ |1〉)

Can Bob extract two classical bits from one quantum bit? No.

If Q is the quantum system, then we have:

I(M : M̂) ≤ I(M : Q) ≤ log(dimQ) = 1

Therefore, Bob can extract at most one classical bit. So Alice should choose a

distinguishable subset instead.

8.3.1 Packing Lemma

Given {ρ(x), σ(x)}x∈X with probability distribution ρ(x) and signal state σ(x). And

σ =
∑

x ρ(x)σ(x) is the average state.

Suppose there exists a projector Π and family of projectors {Πx}x∈X such that if d

and D are dimensions of subspace and space then:

• Tr[Πσx] ≥ 1− ε for all x

• Tr[Πxσx] ≥ 1− ε for all x

• Tr[Πx] ≤ d
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• ΠσΠ ≤ Π
D

size: D

size: d

pnY (yn|xn)

for fixed &
typical xn

Choose the codebook C = {C1, ..., CM} ∼ pn(n the number of letters in each code

word), then there exists a positive operator-valued measure (POVM) {Λm} such that

averaging over the codebooks, averaging over messages in codebook, the probability to

get the right outcome when measuring the state σCm is close to 1:

E
C

E
m∈[M ]

Tr(ΛmσCm) ≥ 1− 2ε− 4
√
ε− 4M

d

D

Here whenever M the total amount of message in codebook is less than the order

of D/d can give a small enough error probability. Corresponds to fill size d ≥ Tr(Πx)

sphere inside of size D(1− ε) ≥ Tr(Π), like the Gaussian Noise channel in Sec. 7.1.1.3.

8.3.2 Application to channel coding

The HSW theorem (7.1) says the capacity of a noisy quantum channel is the maximal

mutual information between input X and output Q, maximizing over input distribution

p

C(N) = max
p
I(X : Q)

Choosing the codebook Ci from pnT = pn|T np,δ where T np,δ is the frequncy-typical set.
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Then, the corresponding string xn and state ρxn are:

xn(i) = Ci

ρxn = ρx1 ⊗ ρx2 ⊗ ...⊗ ρxn

We need to show this choice satisfies all the conditions of Packing Lemma. The

average state:

σ = E(ρxn) =
∑
xn

pnT (xn)ρxn ≈
∑
xn

pn(xn)ρxn = ρ̄⊗n for ρ̄ =
∑
x

p(x)ρx

And let’s take the total projector to be projecting into this average state: Π = Πn
ρ̄,δ.

Does this projector satisfy the four conditions in packing Lemma?

• Condition 1:

E
xn

Tr[Πρxn ] ≥ Tr[Πρ̄⊗n]− ε ≥ 1− 2ε

Therefore, the best 1/2 of xn ∈ Xn have Tr[Πρxn ] ≥ 1− 4ε

Denote ΠXn as the conditionally typical projector, it is calculated as follow:

ΠXn =
⊗
x∈X

Π#x
ρx,δ

This product is permuted according to xn and #x is the count of occurrences of

x in xn.

• Condition 2:

Tr[ΠXnρXn ] =
∏
x∈X

Tr[ρ⊗#x
x Π#x

ρx,δ
] ≥ 1− |X|ε

• Condition 3:

Tr[ΠXn ] =
∏
x∈X

Tr[Π#x
ρx,δ

]

≤
∏
x∈X

Tr[Π
n(p(x)+δ)
ρx,δ

] because of the freq typicality

≤
∏
x∈X

exp(n(p(x) + δ)(S(ρx) + δ))

≤ exp(n(S(Q|X) + δ′))

• Condition 4: For pnT ≤ (1− ε)−1pn, we have the average of ρXn is

E(ρXn) ≤ (1− ε)−1
∑
Xn

pn(Xn)ρXn = (1− ε)−1ρ̄⊗n
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Now we need to calculate

Πρ̄⊗nΠ ≤ 2−n(S(ρ)−δ)

→ ΠE(ρXn)Π ≤ (1− ε)−12−n(S(ρ)−δ)

Here D ≈ 2nS(Q), d ≈ 2nS(Q|X), thus we can take M ≈ 2nI(X:Q).


