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9.1 Details on the Packing Lemma

Regarding the packing lemma, one might be curious as to why we cannot simply use the

POVM {Πm} in place of {Λm}. We can illustrate that this is not correct with a classical

instance of the packing lemma. We also show how to correct this misconception and

properly define {Λm}.

9.1.1 Classical Case

Look at the simple example in which the codebook is C = {1, 2}, and the projectors are

Π1 = diag(1, 1, 1, 1, 0, 0, 0) and Π2 = diag(0, 0, 0, 1, 1, 1, 1). We will take as our signal

states σ1 = Π1/4 and σ2 = Π2/4. As all the operators are diagonal, this is essentially

a classical problem.

Anyhow, observe that Π1 + Π2 = diag(1, 1, 1, 2, 1, 1, 1) 6= I, so {Π1,Π2} is not a

valid POVM. Hence, we cannot simply use {Π1,Π2} in place of {Λ1,Λ2}

However, in this scenario, we can instead use as a POVM Λ1 = diag(1, 1, 1, 1
2
, 0, 0, 0)

and Λ2 = diag(0, 0, 0, 1
2
, 1, 1, 1). In general, when dealing with classcal instances of the

packing lemma, we can obtain valid POVM {Λm} as follows:

Πtotal =
∑
m

Πm

Λm = Π−1totalΠm.

A quick calculation indices that this yields the above expression for {Λ1,Λ2}.

9.1.2 Quantum Case

In the quantum case of the packing lemma, we again cannot simply set Λm = Πm.

Instead, we can use the following prescription to construct Λm, which is analogous to

the procedure employed above. Let Pm = ΠΠmΠ and Ptotal =
∑

m Pm. Note that
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Pm ≥ 0 because it is constructed as a symmetric product of projection operators. We

then define Λm = P
−1/2
total PmP

−1/2
total . If it is the case that Ptotal is not full rank, introduce

an additinal projector Λfail such that
∑

m Λm = I. {Λm} is then a valid POVM.

9.2 Packing Lemma Proof

We can use the above prescription to prove the packing lemma. To begin, let’s look at

the probability of incurring an error on message m, given codebook C:

perr(m|C) = 1− tr(Λmσm) = tr
(

(I − Λm)σm

)
To analyze this expression, we will employ the Hayashi-Nagaoka lemma: Given S

and T , such that 0 ≤ S ≤ I and T ≥ 0,

I − (S + T )−1/2S(S + T )−1/2 ≤ 2(I − S) + 4T.

Set T =
∑

m 6=m′ Pm′ = Ptotal−Pm, and S = Pm. These obey 0 ≤ S ≤ I and T ≥ 0,

so we can apply the Hayashi-Nagaoka lemma:

I − Λm = I − P−1/2total PmP
−1/2
total =

I − (S + T )−1/2S(S + T )−1/2 ≤ 2(I − Pm) + 4
∑
m′ 6=m

Pm′ .

Using this result to evaluate perr(m|C), we have

perr(m|C) ≤ 2(1− tr(Pmσm)) + 4
∑
m′ 6=m

tr(Pm′σm)

Then, making use of the conditions assumed in the packing lemma, we can establish

the bound
tr(Pmcm) = tr(ΠΠmΠσm) = tr(ΠmΠσmΠ) ≥
tr(Πmσm)− ||σm − ΠσmΠ||2 ≥ 1− ε− 2

√
ε,

where we obtain the
√
ε as a result of the bound on gentle measurement proven in

problem set 3. Next, we input the above bound into the expression for perr(m|C) and

average this probability over messages m and codebooks C:

E
C
E
m
perr(m|C) ≤ 2(ε+ 2

√
ε) + 4E

m

1

M

∑
m′ 6=m

tr(Pm′σm).

Noting that E
C
σm = E

C
σCm =

∑
x p(x)σx = σ, we can write the second term as

1

M

∑
m6=m′

tr(ΠΠm′Π)E
C
σm =

∑
m 6=1

tr(Πm′ΠσΠ) ≤ (M − 1)tr
(

Πm′
I

D

)
≤M

d

D
,
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where we have employed the inequalities assumed in the packing lemma. Combining

all the terms and inequalities above, we have

perr(m|C) = 1− tr(Λmσm) ≤ 2ε+ 4
√
ε+ 4M

d

D
⇒

tr(Λmσm) ≥ 1− 2ε− 4
√
ε− 4M

d

D
.

This is the claim of the packing lemma, which is now proven.

9.3 Aside: Pretty Good Measurement

Imagine that given a state σ =
∑

x p(x)σx, we wish to distinguish between the states

σx. We can do this decently well with the “pretty good measurement” which is defined

by the POVM Mx = σ−1/2p(x)σxσ
−1/2. The Barnum-Knill theorem proves that the

pretty good measurement can distinguish between the states σx with error probability

perr(Pretty Good Measurement) ≤ 2perr(Optimal Measurement).

So in general, the “pretty good measurement” achieves an error probability that is

comparable to the optimal error probability.

The pretty good measurement can be thought of as reversing the action of the

channel N : x → σx, and applying this reversal to the state ρ =
∑

x p(x)|x〉〈x|. In

particular, if N has Kraus operators {Ek}, then the reversal of this channel, which

we call the recovery channel, has Kraus operators Fk = ρ1/2E†kρ
−1/2. This generalizes

the “pretty good measurement” to a more general construction known as the “Petz

recovery map”.

9.4 Sequential Coding

In sequential decoding, one decodes a message by enumerating through the set of all

possible message sequences. Specifically, we are given a state σx, and perform on

it the set of measurements {Π, I − Π}, {Πc1 , I − Πc1}, ..., {Πcm , I − Πcm}. These

measurements dictate whether we fail or continue in the sequential coding procedure

as follows
Π→ continue, I − Π→ fail

Πcm → stop, output m, I − Πcm =: Π̂cm → continue

The probability that this procedure fails to output m is

perr(m) = 1− psuccess = 1− tr
(

ΠCmΠ̂cm−1 ...Π̂c1ΠσcmΠΠ̂c1Π̂cm−1ΠCm

)
.
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To analyze this expression, which we will do in the future, we will make use of the

non-commutative union bound:

ω ≥ 0, tr(ω) ≤ 1, P1, ..., PL = set of projectors ⇒

tr(ω)− tr(PL...P1ωP1...PL) ≤
√

2
∑
i

tr(P̂iω), P̂i = I − Pi.

We will prove this relation next class. For now, we can observe that it is not at all

obvious. Imagining that ω is a density matrix, the above quantity on the LHS will

measure the difference between the density matrix, and the density matrix after a set

of L projective measurements are applied to it. In general, applying a set of projective

measurements can change the state drastically. For instance, imagine states

|φj〉 = cos
(π

2

j

L

)
|0〉+ sin

(π
2

j

L

)
|1〉, j = 1, ..., L,

to which we apply projectors

Pj = |φj〉〈φj|.

With this setup, we have 〈φj|Pj+1|φj〉 = |〈φj|φj+1〉|2 = cos2(π
2
1
L

) = 1− O(L−2), which

indicates that applying the measurement Pj+1 to |φj〉, transitions one to state |φj+1〉
with high probability. Therefore, one can begin in the state |φ0〉 ≈ |0〉 and end in

|φL〉 ≈ |1〉 with probability 1 − O( 1
L

). These states are very different from each other

(nearly orthogonal!), so it can be tricky to place a bound on tr(ω)−tr(PL...P1ωP1...PL).

We will discuss this further in the next class.


