8.8372/18.5996 Quantum Information Science III Fall 2020
Lecture 10: October 1, 2020

Lecturer: Aram Harrow Scribe: Matthew Kearney, John Martyn

10.1 Non-Commutative Union Bound

To begin, recall the statement of the non-commutative union bound:
w>0, tr(w)<1, P,..,P,=setof projectors =

tr(w) — tr(Py...PwPy...Pp) <2 /Ztr(]f’iw), P=1-P,.

We will now prove this bound. We will first examine the case where w is a pure

state written as

w= )Wl <1

We would like to show that

) 1P = 1 Pre Pr i) |1 < 2 /Z 12 ) |1

We note that since Py, and PL are orthogonal operators that sum to I we can write

|¥) as
W) = Pp i) + Pp|v).
We will now use a proof by induction on L with the inductive assumption that
L1
1) = Pooae P} 1P <> 1P ) )17
i=1

To begin we have

W) — Pp..Py ) = Py ) + Pr(|v) — Proy...Pr [¥)).
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Since P, and P are orthogonal operators we can then use the Pythagorean theorem

1) = ProPy[) 1P = 1Py [0) 12 + 1 P(l9) = Poore P )1

Since projection operators do not increase the norm we have

1) — Proo.Py ) |12 < [P [00) |12+ || [9) = Proae Py |9) |12

We can then use our inductive assumption to get

L
1) = Po Py P < Y IB) 1P =
=1

This proves the statement of the the theorem for the pure state case. We now
discuss the case of mixed states. We note that the left hand side of the inequality is

linear in omega. Therefore if w = > p;1;, this gives us

tr(w) — tr(Pp... PwPy. Pr) = Y pi(te(e;) — tr(Pr... Py Py PL)).

However, the right hand side of the inequality consists of the square root of a linear
function of w. This means the right hand side is concave in w. This gives us the
following property

2\/2 tr(Buw) = 2\/2 > mitr(B) 223, 3 e(B)
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Putting these facts together we have

tr(w) — tr(Pp...PwPy...P) = Zpi(tr(m) — tr(Py... Py Py...PL))

< 2ij1 /Ztr(pz‘%‘)
<2 /Ztr(]siw).

This proves the statement of the theorem for mixed states.

10.2 Proving HSW Theorem with Non-Commutative
Union Bound

Recall that the failure probability of our sequential decoding scheme is given by

perr<m> =1- Psuccess = 1 —tr <Hcmﬂcm,1‘-‘ﬂclnacmnﬂqﬂcm,lncm) .

Remember from the hypothesis of the packing lemma that

trllo, IT > 1 —e.

Putting these together we have

Perr(m) < € + trllo,, I — tr(IL,, I, .10, o, I, 11, 11, ).

Using the non-commutative union bound to Ilo,, II, we get

Perr(m) < €+ 2\/tr((ﬂcm + 1M, , + ... + )Mo, IT)

Taking the expectation of this quantity over the message and codebook, we establish

EoE nper(m|C) < €+ 2Em7c\/ tr((1,,, + ., , + ... + I, )Tlo,,, I1).

Once again, by the concavity of the square root (i.e. applying Jensen’s inequality),
we have that
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EcEpers(m|C) < €+ 2\/ Epctr((,, + M, _, + ... + 11,0, T0)

We already showed in section 9.2 that

Emctr(ﬂcmﬂacmﬂ) <e+2Ve

Epc Y tr(Ily o, IT) < -

m#m/

Therefore this gives us

Epn,cPers(m|C) < €+ 2\/6 +2ve+ Md/D.

Hypothesis Testing

We would like to distinguish p®" from o®". Specifically, we want a measurement M
such that

tr(p®"M) > a, a€(0,1)
tr(c®" M) ~ 27"
We will prove Stein’s Lemma, which states the optimal R = D(p||o) = tr(p(log p —

logo)). The optimal M is the projector onto [a™1p®" — 2"ta®" > (] which is the
projector onto the non-negative eigenspace of the given quantity.

We have shown as an exercise that, classically, the best M to distinguish distribu-
tions p™ and ¢" is given by M being a projector onto T}'s. Specifically,

P (T75) = Lasn — oo
¢ (T7%5) ~ |T7%|q(1)™D...q(d)™(D ~ 2Pl
so we can distinguish the two stat fairly well, depending on the magnitude of D(p||q).

We will now explore the quantum version following the proof of Bjelakovic et al.
Define p and o as

p= er lag) (] o= ZS;C |B2) (Bz]

T x

We define a new type of typical projector as
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s = Z Ban

zm:|L 3" log sz, —tr(plog o) | <6
i=1
Ban = By ® ... @ By,

We note the following properties of this projector

tr(p®nH2HU’5) Z 1—c¢ (101)
550" =0 (10.2)

ntr(plogo—49)Tn n ®nyn ntr(plog o+9) TN
2T 5 < T 50 "I 5 < 278 TTOTIG, 5 (10.3)

Achievability

We will first show that Stein’s Lemma is achievable with M = HZHU» 51_[2751_[2“07 s- With

this definition, we have

tr(p® I 5 — p*" M) = tr(IT) 5(p™" — 107 510, 5 p™" 1T, 5)

< 1P =10, 50" I 5l =
tr(Mp®") > tr(p® L) 5) — [0 — 11, 5p°" 107, 511

By the gentle measurement lemma we have that

tr(Mp®™") > 1 —¢€—2/e > a.

Now we look at how M acts on o®™:

tr(Mo®") = tr(II) 5110, , ;oI  5).

pllo, pllo,o

Using equation 10.3 this gives us

tr(MO.®n) < tr(nzé)Zntr(ploga+6) < 2n(S(p)+6tr(plog0')+6) _ 2771(D(/)HO’)726)’

and so we have proven achievability.
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Converse

Suppose tr(Mp®") > o. We will argue that tr(Moc®") is not too small. From 10.2 and
10.3 we have

®n > Hp” 2ntr(ploga—6)

tr(Mo®™) > tr(MHZ”a’é)er(”log"_5).
To bound this, we will now show a bound for tr(M I, s)- We note the following

pEIIn 5 = 117 5 p® I 5 < 20 C)=yr ¢ (10.4)

We will compute tr(MIL, 5).

tr(MII}, , 5) = tr(I1})
> tr(I1)

6MH,0HJ 6)
(5MHpHU,(5Hp,6)

pllo,

pllo,

Using equation 10.4 we have

tr( ML, 5) > tr(I17 , s MITY  STI )27 (0)=0)

Let B be the atypical part of p®" (p = A+ B = typical + atypical).

tr (ML, 5) = te(TI, s MII 5 (05" — B))2re@)-9),

Once again by gentle measurement we have

tr(MIL, 5) > (@ — 2y/e — €)27S0-0),

This finally brings us to our conclusion that

tr(Mo®) > (o — 2/ — €)2-(Plpllo)+25)

and the proof of the converse is complete.
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Corollary: Monotonicity of D(p|/c) under Partial Trace

Given pap,04p there exists an M such that tr(Mp5") > a and tr(Mo§") a2 2 Pleallea),

This means

tr((M ® Ip)*"pp) = tr(Mp%") > a
tr(M @ I5)%"0%%) = tr(Mo%m) > 27 Plpallra),

Therefore

9—nD(palloa) > 9-nD(paplloas)

D(paglloas) = D(palloa).
Evidently, D(||) is decreases under partial trace.
Corollary: Strong Subadditivity
We can express the conditional mutual information as
I(A:C|B)=1I(A: BC) = I(A: B) = D(pascllps ® psc) — D(pasllpa @ ps).

If we let 0apc = pr ® pBc, then the second divergence is simply the first but with
both systems traced over C. Thus, the monotonicity of D(p||c) under partial trace
gives us that

I(A:C|B)=I1(A:BC)—I(A:B)>0.

This is just strong subadditivity.

Aside: Converse of Schumacher Compression

Recall equation 10.4

A= p®nH2,5 — HZ,(Sp@nHZ,(S < Q—n(s(p)—d)Hzﬁ

Let p®" = A + B with tr(B) < e. Then we have

a < tr(Mp®") =tr(MA) + tr(BM) < tr(AM) + .

This gives us
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a —e < tr(AM) < tr(MII] 5) exp(—n(S(p) — 9)).

p

So finally we have that

tr(M) > tr(MII75) > (a — €) exp(n(S(p) — 9)),

which is the converse of Schumacher compression.
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