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In this section, we discuss some of the applications of relative entropy to show that

it is a useful measure.

11.1 Application 1: Channel Coding

Consider a CQ channel {p(x), σx}, where message x is sent with probability px and

σx is the resulting signal state. Define σ =
∑

x p(x)σx, making σ the average over the

input states.

Recall that the relative entropy is given by

D(σx||σ) = tr[σx(log(σx)− log(σ)] = −S(σx)− tr[σx(log(σ))]

If we then take the average over these relative entropies, we get the familiar Holevo

χ, which describes the difference between the entropy of the average state and the

average of the entropies of each of the states.

∑
x

p(x)D(σx||σ) = −
∑
x

p(x)S(σx)− tr

[∑
x

p(x)σx log(σ)

]
= S(σ)−

∑
x

p(x)S(σx) = χ.

This is an interesting result and leads us to ask Why should the relative entropy

have anything to do with the channel capacity?

We can think of this as saying that the ability of the ensemble to carry information

is related to the how surprising each message σx is compared to the average state σ,

which is given by D(σx||σ). To give a classical example, if we imagine that it rains 10%

of the time and is sunny the other 90%, then the relative entropy between the state

rainy and the average state will be low, meaning we are less surprised about it being

sunny when the average state is our prior.

Along this line of thinking, we can imagine a hypothesis testing scenario where we

try to distinguish a typical message σxn = σx1 ⊗ σx2 ⊗ ...⊗ σxn from the average state
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σ⊗n, which serves as our prior of the messages we will receive. Stein’s Lemma tells us

we mistakenly identify the message as the average state with probability 2−nχ. This

quantity is important for hypothesis testing realizations like sequential decoding where

we may need to test against exponentially many possible states before testing against

the correct state and we want to be very sure that we are not accepting the wrong

messages.

While this discussion is suggestive of a strong link between hypothesis testing and

channel coding, Ogawa and Nagaoka formalized this link by showing that you can prove

the HSW theorem using hypothesis testing with carefully chosen states.

11.2 Application 2: Thermal States

Let H be a Hamiltonian and define

γT =
e−H/T

tr[e−H/T ]
F (ρ) = E(ρ)− TS(ρ) = tr[Hρ]− TS(ρ).

Where F (ρ) is the free energy and the thermal state γT is the state that minimizes

free energy. Recall from PSET 4 that We derived an expression for a measure of how

close a state’s free energy is to the minimum free energy given by

D(ρ||γT )

ln(2)
=
F (ρ)− F (γT )

T
=:

∆F

T
.

Where ∆F is excess free energy. This shows that if the free energy of a state is

small, that state is close to the thermal state.

To see why this is the case, we ask the following question: What is the probability

that you measure a thermal state and get a state that looks like ρ? That’s sort of

like asking what the probability is that ρ arises from fluctuation which, by Crooks

fluctuation theorem, is given by e−∆F/T = 2D(ρ||γT ). So the relative entropy is saying

something about how surprised you should be to see ρ when you look at γT .

There is also another interpretation of D(ρ||γT ) in this case related to information

removal and storage. Recall briefly Maxwell’s Demon:

In this thought experiment, there is a box of gas particles with a partition in the

middle, separating the left half from the right half. Further, there is a small hatch in

the middle of this partition that can be open and shut by a demon in such as way as

to not use any energy. If the demon opens that latch whenever a gas particle from the



Lecture 11: October 6, 2020 11-3

left side of the box is headed for it and closes it whenever a gas particle from the right

is headed for it, eventually the gas particles will all end up on the right side of the

box. This will have reduced the entropy and can therefore be used to perform work by

opening the hatch and making the leftward motion of the gas particles do work. This

however seems to violate the second law of thermodynamics.

The Landauer resolution to this paradox says that in fact this is not a violation be-

cause although the particles may be loosing entropy, the Demon is gaining information

about which side of the box the gas is on and therefore is gaining entropy. In the act

of gaining information, the Demon must also erase old information to make room for

the new information. This erasure increased the entropy by at least as much as it is

decreased by the collecting of the gas, giving us the minimal amount of work it costs

to erase a bit, which by Landauer’s erasure principle is KBT ln(2). T

Along these lines, we D(ρ||γT ) as telling us how much space the state ρ has to

store information. The amount of work that can be extracted from state ρ is given by

∆F = TD(ρ||γT )/ ln(2). Then, if we extract all the work we can from the state ρ and

use it to erase bits we can erase a total of

TD(ρ||γT )/ ln(2)

KBT ln(2)
=
D(ρ||γT )

KB

bits. We can alternatively think of this operation as storing D(ρ||γT )/KB bits inside

ρ.

Second Law We can also state a strong version of the second law of thermodynamics.

For any channel N satisfying N (γT ) = γT and any state ρ we have

F (N (ρ)) ≤ F (ρ)

This is because any quantum channel can only decrease the relative entropy between

ρ and γT , so

F (ρ)− F (γT ) =
D(ρ||γT )

ln(2)
≥ D(N (ρ)||N (γT ))

ln(2)
= F (N (ρ))− F (γT ).

11.3 Application 3: Quantifying Entanglement

In this section we seek principled ways of quantifying entanglement between subsys-

tems. We can first ask, what properties of this quantification migth make sense or be

useful? To answer this questions, it will be useful to draw analogy to the case of trying

to quantify someone’s wealth. You can imagine that it might be easy to quantify the
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wealth of two people whose money is all in US dollars, we can simply count who has

more. But what about comparing someone whose money is in US dollars to some-

one whose money is in Euros? Or someone whose wealth is in diamonds compared to

someone whose wealth is in gold? It would be useful to have a single metric (such as a

”gold standard”) to compare these values on, such as converting them all to US dollars

first. We also want this to be a fair comparison. If we suppose that in the process

of converting from Euros to US dollars someone loses an excess amount of wealth or

somehow gains extra wealth such that when they convert back to Euros, they end with

significantly more or less money than they started with, then this hardly seems like

a fair comparison. Therefore we want to be able to convert between currencies with

a minimal ”exchange fee” so as to not significantly changing our wealth. Lastly, we

would like it to be true that If we have our wealth in two different bank accounts, if

we convert this wealth to US dollars, it doesn’t matter if we convert it together or

separately, we want to end up with the same amount of total US dollars at the end.

This gives us the following properties:

1. Convertability

2. Small Conversion Fee

3. Additivity

These will be some of the properties that we may find useful when trying to judge

a quantification scheme for entanglement.

11.3.1 Pure State Entanglement

We will begin by talking about quantifying the entanglement of pure states. Given a

pure state |ψ〉AB the entanglement is quantified by the entropy of entanglement

S(A)ψ = S(B)ψ =: E

Explicitly, if |ψ〉 =
∑

i

√
λi |ai〉 ⊗ |bi〉 then E = H(λ).

Now we can ask Why is the entropy of entanglement a good measure of bipartite

entanglement? We can imagine a conversion scheme, where different entangled states

can be converted to the same ”currency” (in our case, this will be EPR pairs) through

some set of operations. Further, we don’t want to allow these operations to create new

entanglement, just as we didn’t want our conversions in the wealth example to create

new wealth. Therefore, if we allow only local operators and classical communication
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(LOCC), Bennett, Bernstein, Popescu, and Schumacher (arXiv 9511030) showed that

we can transform our state ψ as

ψ⊗n → Φ⊗n(E−δ) (Entanglement Distillation)

Φ⊗n(E+δ) → ψ⊗n (Entanglement Dilution)

where Φ = 1√
2

(|00〉+ |11〉). This gives us our ”exchange rate” between any entan-

gled state and the EPR state as E = S(A) = S(B). Further, there is only a small

exchange fee of δ.Therefore, asymptotically up to LOCC we can think of ψ as equalling

E copies of Φ.

11.3.2 Mixed State Entanglement

What about the theory of bipartite entanglement for mixed states? We can try and

do something analogous. Define the distillable entanglement ED(ρ) and entangle-

ment cost EC(ρ) to be the max and min real numbers respectively such that

ρ⊗n ≈LOCC ΦED(ρ) and (11.1)

ΦEC(ρ) ≈LOCC ρ⊗n. (11.2)

Unfortunately, these definitions do not lead to the properties we discussed in the be-

ginning. Some properties of these measures of entanglement include:

• They are not additive, so sometimes ED(ρ1 ⊗ ρ2) > ED(ρ1) + ED(ρ2).

• There is no single letter formula known for these quantities. To get around

this we can define the entanglement of formation EF (ρ) to be the minimum

value of
∑

i piS(ψAi ), taken over pairs of mixtures of pure states (pi, ψi) satisfying∑
i piψi = ρ. We have EC ≤ EF , but sometimes this inequality is strict.

• Sometimes we have entangled states with ED = 0 (”bound entanglement”), but

we have no general theory of these states or why they occur.

• On the other hand, for any entangled state EC > 0.

• ED ≤ EC , and sometimes this inequality is strict, meaning we could lose ”entan-

gledness” in converting back and forth between EPR pairs and certain states.

Let’s try and come up with a nicer measure of bipartite entanglement for mixed states.
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11.3.2.1 Relative Entropy of Entanglement

First define the separable states to be states in the set

Sep(dA, dB) = conv {α⊗ β : α ∈ DA, β ∈ DB}

where DA are dA × dA density matrices DB are dB × dB density matrices and

conv(X) =

{∑
x∈X

pxx : px > 0,
∑
x

px = 1

}
is the convex hull of the points in X (the smallest convex set that contains all of

the points in X). These are our unentangled states. Unfortunately, it is NP hard to

determine if a given state is separable.

Now, we can define the relative entropy of entanglement

ER(ρ) = min
σ∈Sep

D(ρ||σ)

This measure may be non-additive, so we also define the regularized relative en-

tropy of entanglement

E∞R (ρ) = lim
n→∞

1

n
ER(ρ⊗n) ≤ ER(ρ)

(and this inequality is sometimes strict).

Why is the relative entropy of entanglement nice? Define the asymptotically non-

entangling operations (a family of operations that includes LOCC) to be channels

Λ1,Λ2, ...Λn : (A′⊗B′)⊗n → (A⊗B)⊗n with Λn approximately sending separable states

to separable states.

To make this definition precise define the Rèyni divergences

Sα(A||B) =
1

α− 1
log(tr[AαB1−α])

where as a few examples we have

S1(A||B) = S(A||B)

S1/2(A||B) = −2 log(F (A,B))

S∞(A||B) = log ||B−1/2AB−1/2 ||∞ = inf{λ : A ≤ 2λB}

Now channels Λ1,Λ2, ...Λn are asymptotically non-entangling if

∀ρ, σ ∈ Sep : S∞(Λn(ρ⊗n)||σ) ≤ εn

with εn → 0 as n → ∞. This gives us our precise definition of these operations that

we will now use to examine the regularized relative entropy of entanglement.
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Theorem 7 (Brandao-Plenio arXiv:0710.5827) Up to asymptotically non-entangling

operations

ρ⊗n ↔ Φ⊗nE
∞
R (ρ)

This is exactly the type of conversion we were looking for in our metric of entan-

glement.

We note that a similar result holds in thermodynamics. Define thermal opera-

tions to be channels

N (ρ) = trE

[
V

(
ρS ⊗

exp(−βHE)

tr[exp(−βHE)]

)
V †
]

with [V,HS ⊗ I + I ⊗ HE] = 0. HS is the system Hamiltonian while HE is the

environment (or bath) Hamiltonian. These are the operations that are free if the

thermal states are free. In other words, they do not create any free energy. Let

γT = e−βHS/tr[e−βHS ] be the thermal state of the system. Under thermal operations,

we can transform a state ρ into a state σ at a rate D(ρ||γT )/D(σ||γT ). In this way, we

can think of entanglement and non-thermal states as resources.

We will now conclude by sketching the proof of Brandao-Plenio.

First, we compute ER(Φ⊗n). We do this via Stein’s Lemma and ote that the optimal

measurement to distinguish any state from the EPR state is M = Φ⊗n. Taking σ ∈ Sep

we have

max
σ

tr[Mσ] = max
|α〉,|β〉

∣∣〈Φ|⊗n |α〉 |β〉∣∣2
= max
|α〉,|β〉

|〈α| |β〉|2 /2n = 2−n

which gives ER(Φ⊗n) = n. This is obviously the dsired result, since it tells us that n

EPR states are worth n EPR states worth of entanglement.

Now, for any state ρ, S∞(ρ||Sep) = λ implies that there exists a σ ∈ Sep with

ρ⊗n ≤ 2λσ. Equivalently, 2−λρ⊗n ≤ σ. Then we can write

σ = 2−λρ⊗n + (I − 2−λ)γ

for some density matrix γ. Define an asymptotically non-entangling operation where Λn

is the either the measurement Φ⊗nR and outputs ρ⊗n or the measurement I−Φ⊗nR and

outputs γ. The outcome of this measurement on Φ⊗nR is φ⊗n and the outcome of the

measurement on any separable state is 2−λρ⊗n + (I − 2−λ)γ = σ. So the measurement

is asymptotically non-entangling and maps Φ⊗nR to ρ⊗n.

To map in the other direction we use the optimal test distinguishing ρ⊗n from Sep.


