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We begin by exploring the intuition for the connections between the Holevo χ quantity,

the minimum entropy and the entanglement of formation in Shor’s 2003 paper quant-

ph/0305035, following the discussion in the previous lecture.

13.1 Sub-additivity of Smin ⇒ Super-additivity of χ

Given an ensemble of states {pi, ρi} with average state ρ̄ =
∑
piρi, the Holevo χ

quantity is

χ(N) = S(N(ρ̄))−
∑

piS(N(ρi)) (13.1)

by definition.

We can bound χ from above using

χ(N) ≤ S(N(ρ̄))− Smin(N) ≤ Smax(N)− Smin(N) ≤ log dB − Smin(N) (13.2)

Shor showed that for every channel N , one can construct a channel N ′ that makes the

inequalities above tight. In particular, if N has dimension dB,

χ(N ′) = log dB − Smin(N) (13.3)

The construction is quite straightforward. After the application of the quantum channel

N , apply a classically-controlled random Pauli operator σx, so that N ′(ρ) = σxN(ρ)σ†x.

In this manner, the first term in equation (13.1) is S(N(ρ̄)) = log dB, because

N ′

(∑
x

1

d2B
|x〉〈x| ⊗ ρ

)
=
∑
x

1

d2B
σxN(ρ)σ†x =

I
dB

(13.4)

Moreover, the second term is Smin(N ′) = Smin(N). It follows that if Smin is subadditive,

then χ is superadditive.

The other direction is non-trivial.
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13.2 Renyi Entropies

Smin is generally computationally more tractable than χ, as we can view them as the

limit of Renyi entropies. Recall

Sα(ρ) =
1

1− α
Tr[ρα] (13.1)

There are a few particular cases of α to highlight: S0 = log rank ρ, S∞ = − log ||ρ||∞
and S1(ρ) = S(ρ), the standard Von Neumann entropy. Analogously, we can define

the min Renyi Entropy via

Sα,min(N) = min
ψ
Sα(N(ψ)) =

α

1− α
log ||N ||1→α (13.2)

where ||N ||β→α is the “beta to alpha norm” defined as follows

||N ||β→α = sup
||N(X)||α
||X||β

(13.3)

Finding Sα,min is still a hard optimization problem, but Sα,min is more helpful to

us because the norms it is related to obey useful inequalities.

13.3 The Connection to the Entanglement of For-

mation

We can analogously extend the Holevo information of a state ρ, by decomposing over

an ensemble of pure states {p, φ} that averages ρ

χ(N, ρ) = max
{p,φ} s.t.

∑
x pxφx=ρ

S(N(ρ))−
∑

pxS(N(φx)) (13.1)

where to conclude χ(N) = maxρ χ(N, ρ). If we consider applying the Stinespring dila-

tion theorem to N s.t. N(ω) = TrE(V ωV †), then S(N(φx)) is simply the entanglement

of V |φx〉, and it follows

χ(N, ρ) = S(N(ρ))− EF (V ρV †) (13.2)

We might be concerned that not all entanglements of formation EF (V ρV †) corre-

spond to the minimum average entropy of the corresponding channel N . However, the

MSW correspondence states that

EF
(
ρBE

)
= min
{p,φ} s.t.

∑
x pxφx=ρ

∑
x

pxS
(
trEφ

BE
x

)
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for any bipartite state ρ.

Applying it to the Stinespring dilation of NA→B, we have

EF (V ρV †) = min
{p,φ} s.t.

∑
x pxφx=ρ

∑
x

pxS
(
trEV φxV

†)
which guarantees that equation (13.2) holds.

13.4 Entanglement-Assisted Capacity

The discussion of Smin and χ above only delays the pain of performing the optimization

problem over {p, φ} such that
∑

x pxφx = ρ. Now we turn to the more well-understood

problem of entanglement-assisted capacities.

We want to analyze the additivity of the entanglement-assisted capacity of two

independent channels CE(N1 ⊗ N2). Define systems A′1, A
′
2 upon which N1, N2 act,

respectively, and consider an environment system A

CE(N1 ⊗N2) = max I(A : B1B2)τ , τ = (IA ⊗N
A′

1→B1

1 ⊗NA′
2→B2

2 )(φAA
′
1A

′
2) (13.1)

= max I(A : B1B2)ψ, |ψ〉 = (IA ⊗ V
A′

1→B1E1

1 ⊗ V A′
2→B2E2

2 )|φ〉 (13.2)

note the distinction between the two definitions, where in the second we purify the

two systems independently s.t. they are separable in ψ but not in τ . We will use this

independence later. It follows now that we can apply the chain rule sequentially

I(A : B1B2)ψ = I(A : B1) + I(A : B2|B1) = (13.3)

= I(A : B1) + I(AB1 : B2)− I(B1 : B2) ≤ I(A : B1) + I(AB1 : B2) (13.4)

as the mutual information is non-negative. Let us consider the terms above indepen-

dently, starting by I(AB1 : B2). Intuitively, if it was helpful to include B1 in addition

to A, we could have included it into the definition of the ‘environment system’ WLOG.

In this manner, I(AB1 : B2) ≤ I(AB1E1 : B2), and symmetrically for 1 ↔ 2. We

conclude

CE(N1 ⊗N2) ≤ I(AB1E1 : B2) + I(AB2E2 : B1) ≤ CE(N1) + CE(N2) (13.5)

Finally, note that this upper bound is always achievable as we can run the channels

independently. We conclude

CE(N1 ⊗N2) = CE(N1) + CE(N2) (13.6)

and therefore we conclude CE is additive and has a single-letter formula that is concave

in ρ. Moreover, through superdense coding and quantum teleportation (problem set 5,
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problem 1) it determines the quantum entanglement-assisted capacity QE = CE/2 as

well.

We can contrast these nice properties of the entanglement-assisted capacities (CE
additive and CE = 2QE) with the difficulty of the unassisted capacities (C, Q). We only

know that Q ≤ C, but this bound can have large gaps. For instance, the completely

dephasing channel has C = 1 but Q = 0. On the other hand, the noiseless channel

has Q = C. This makes it difficult to think of channels as equivalent resources in the

absence of free entanglement.

13.5 Quantum Reverse Shannon Theorem and Em-

bezzling States

The additivity of CE and the reversibility of the quantum Shannon theorem allows

us to think of channels as equivalent resources, associated with a resource theory. In

particular, reversibility (defined formally below) allows us to convert between channels

at a common “exchange rate”.

The quantum reverse Shannon theorem states that any quantum channel can be

simulated by an ‘unlimited amount’ of shared entanglement and CE classical bits, where

CE is the entanglement-assisted classical capacity of the channel. In informal resource

notation,

unlimited entanglement + CE[c→ c] ≥ 〈N〉 (13.1)

The lecturer traces a key distinction here between ‘unlimited entanglement’ and∞[qq],

an arbitrary amount of EPR pairs. The key intuition is that the channel simulation may

consume a different amount of EPR pairs for different inputs, and therefore it doesn’t

suffice to feed some amount of EPR pairs to the protocol. Instead, embezzling states

are bipartite states that allow the removal of a small amount of entanglement under

local operations into an additional set of registers, while the original state remains

approximately the same. That is, heuristically,

|Γ〉AB →≈ |Γ〉AB ⊗ |ψ〉A′B′ (13.2)

where the A’B’ registers are much smaller than AB. A motivating example is the

following state.

|Γ〉 =
1√
n

n∑
i=1

|Φ2〉⊗i ⊗ |00〉⊗n−i|ii〉 (13.3)
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Note that if we define Γ′ based on the removal of the first Bell pair Φ2, i.e.

|Γ′〉 =
1√
n

n−1∑
i=0

|Φ2〉⊗i ⊗ |00〉⊗n−i|ii〉 (13.4)

then the fidelity F (Γ,Γ′) = 1− 1
n

and we have ‘stolen an EPR pair’.

Another example of an embezzling state is

|Ψ〉 ∝
N∑
i=1

1√
i
|ii〉

for some finite N . Embezzling entanglement then looks like

(UA ⊗ V B) |Ψ〉AB |00〉AB ≈ |Ψ〉AB |Φ2〉AB

for some local unitaries UA and V B.

We can show that there exist local unitaries U, V such that F ((U⊗V ) |Ψ〉 |00〉 , |Ψ〉 |Φ2〉) ≥
1− 1/ log n. Let

∑N
i=1 1/i = CN . The Schmidt coefficients of |Ψ〉 |00〉 are

1√
CN

,
1√
2CN

,
1√
3CN

,
1√
4CN

, . . .
1√
NCN

, 0, . . . 0

whereas the Schmidt coefficients of |Ψ〉 |Φ2〉 are

1√
2CN

,
1√
2CN

,
1√
4CN

,
1√
4CN

,
1√
6CN

,
1√
6CN

, . . . , ,
1√

2NCN
,

1√
2NCN

Therefore, the maximum fidelity is(
1√
CN

,
1√
2CN

, . . .
1√
NCN

, 0, . . . 0

)
·
(

1√
2CN

,
1√
2CN

,
1√
4CN

,
1√
4CN

, . . .
1√

2NCN

)
≥ 1

CN

(
1

2
+

1

2
+

1

4
+

1

4
+

1

6
+

1

6
+ . . .+

1

N

)
≥ 1

CN

(
1

1
+

1

2
+

1

3
+ . . .+

1

bN/2c

)
≥ lnN/2

lnN
= 1− 1

logN

Note that entanglement embezzlement preserves the original superposition across the

bipartite state |Ψ〉, which is crucial for the quantum reverse Shannon theorem.
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13.6 Quantum Capacity

In resource notation, we define the quantum capacity by

〈N〉 ≥ Q(N)[q → q] (13.1)

In general, Q ≤ QF ≤ Q2, that is feedback and two-way channels increase the capacity

of quantum information over the channel, however, sending additional classical com-

munication [c→ c] does not help. Mathematically, the quantum capacity is defined by

the maximum amount distallable entanglement that can be generated with the channel

Q(N) = max
ψAA′

ED((IA ⊗NA′→B)ψAA′) (13.2)

The Choi-Jamiolkowski state ω(N) is

ω(N) = (IA ⊗NA′→B)(ΦAA′) =
1

dA

∑
ij

|i〉〈j| ⊗N(|i〉〈j|) (13.3)

where ΦAA′ = 1√
dA

∑
i |ii〉 is the maximally mixed state. This state presents an in-

teresting interpretation of the channel, as the mapping N → ω(N) is an isomorphism

(known as the Choi-Jamiolkowski isomorphism). We can show that this mapping is

isomorphic by identifying the inverse map: conditioning on the first subsystem of ω(N),

we obtain N(|i〉 〈j|) for every basis element |i〉 〈j|, which suffices to define the channel

N .

We can use ω to simulate N as follows. Consider three registers E,A,A′, where

E holds a state ρ and A,A′ share the maximally mixed state ΦAA′ . Consider the

quantum circuit defined by feeding A′ through the quantum channel N , and a Bell

state measurement is jointly made on the registers E,A. If the bell state measurement

returns a string j, then the state resulting on the register A′ → B is N(σjρσ
†
j). In this

manner, j = 0 with probability d−2A , and then N(σjρσ
†
j) = N(ρ). It follows ω(N) can

simulate N with probability d−2A and in this manner,

ED(ω(N)) > 0 ⇐⇒ Q(N) > 0 (13.4)

Unfortunately, it is still largely unknown when Q(N) = 0. A case that Q(N) = 0 is

when N is entanglement-breaking, or equivalently when ω(N) ∈ Sep is separable.

We can generalize entanglement-breaking channels in two different ways. One way

to generalize the entanglement-breaking property is to consider antidegradable chan-

nels.

We say N is antidegradable if there exists some map ε such that N = ε ◦ N c (i.e.

Bob gets less information than Eve). Conversely, we say that N is degradable if there



Lecture 13: October 15, 2020 13-7

exists some map ε such that N c = ε◦N (i.e. Bob gets more information than Eve). For

example, the erasure channel with erasure probability p is degradable for p ≤ 1/2 and

antidegradable for p ≥ 1/2. In general, however, not all channels are either degradable

or antidegradable.

We can show using the no-cloning theorem that antidegradable channels also have

zero quantum capacity (without classical feedback). Interestingly, degradable channels

have additive capacity.


