# 8.S372/18.S996 Quantum Information Science III <br> Fall 2020 <br> Lecture 13: October 15, 2020 <br> Lecturer: Aram Harrow <br> Scribe: Thiago Bergamaschi, Yuan Lee 

We begin by exploring the intuition for the connections between the Holevo $\chi$ quantity, the minimum entropy and the entanglement of formation in Shor's 2003 paper quant$\mathrm{ph} / 0305035$, following the discussion in the previous lecture.

### 13.1 $\quad$ Sub-additivity of $S_{\min } \Rightarrow$ Super-additivity of $\chi$

Given an ensemble of states $\left\{p_{i}, \rho_{i}\right\}$ with average state $\bar{\rho}=\sum p_{i} \rho_{i}$, the Holevo $\chi$ quantity is

$$
\begin{equation*}
\chi(N)=S(N(\bar{\rho}))-\sum p_{i} S\left(N\left(\rho_{i}\right)\right) \tag{13.1}
\end{equation*}
$$

by definition.
We can bound $\chi$ from above using

$$
\begin{equation*}
\chi(N) \leq S(N(\bar{\rho}))-S_{\min }(N) \leq S_{\max }(N)-S_{\min }(N) \leq \log d_{B}-S_{\min }(N) \tag{13.2}
\end{equation*}
$$

Shor showed that for every channel $N$, one can construct a channel $N^{\prime}$ that makes the inequalities above tight. In particular, if $N$ has dimension $d_{B}$,

$$
\begin{equation*}
\chi\left(N^{\prime}\right)=\log d_{B}-S_{\min }(N) \tag{13.3}
\end{equation*}
$$

The construction is quite straightforward. After the application of the quantum channel $N$, apply a classically-controlled random Pauli operator $\sigma_{x}$, so that $N^{\prime}(\rho)=\sigma_{x} N(\rho) \sigma_{x}^{\dagger}$. In this manner, the first term in equation (13.1) is $S(N(\bar{\rho}))=\log d_{B}$, because

$$
\begin{equation*}
N^{\prime}\left(\sum_{x} \frac{1}{d_{B}^{2}}|x\rangle\langle x| \otimes \rho\right)=\sum_{x} \frac{1}{d_{B}^{2}} \sigma_{x} N(\rho) \sigma_{x}^{\dagger}=\frac{\mathbb{I}}{d_{B}} \tag{13.4}
\end{equation*}
$$

Moreover, the second term is $S_{\text {min }}\left(N^{\prime}\right)=S_{\text {min }}(N)$. It follows that if $S_{\text {min }}$ is subadditive, then $\chi$ is superadditive.

The other direction is non-trivial.

### 13.2 Renyi Entropies

$S_{\text {min }}$ is generally computationally more tractable than $\chi$, as we can view them as the limit of Renyi entropies. Recall

$$
\begin{equation*}
S_{\alpha}(\rho)=\frac{1}{1-\alpha} \operatorname{Tr}\left[\rho^{\alpha}\right] \tag{13.1}
\end{equation*}
$$

There are a few particular cases of $\alpha$ to highlight: $S_{0}=\log \operatorname{rank} \rho, S_{\infty}=-\log \|\rho\|_{\infty}$ and $S_{1}(\rho)=S(\rho)$, the standard Von Neumann entropy. Analogously, we can define the min Renyi Entropy via

$$
\begin{equation*}
S_{\alpha, \min }(N)=\min _{\psi} S_{\alpha}(N(\psi))=\frac{\alpha}{1-\alpha} \log \|N\|_{1 \rightarrow \alpha} \tag{13.2}
\end{equation*}
$$

where $\|N\|_{\beta \rightarrow \alpha}$ is the "beta to alpha norm" defined as follows

$$
\begin{equation*}
\|N\|_{\beta \rightarrow \alpha}=\sup \frac{\|N(X)\|_{\alpha}}{\|X\|_{\beta}} \tag{13.3}
\end{equation*}
$$

Finding $S_{\alpha, \text { min }}$ is still a hard optimization problem, but $S_{\alpha, \text { min }}$ is more helpful to us because the norms it is related to obey useful inequalities.

### 13.3 The Connection to the Entanglement of Formation

We can analogously extend the Holevo information of a state $\rho$, by decomposing over an ensemble of pure states $\{p, \phi\}$ that averages $\rho$

$$
\begin{equation*}
\chi(N, \rho)=\max _{\{p, \phi\} \text { s.t. } \sum_{x} p_{x} \phi_{x}=\rho} S(N(\rho))-\sum p_{x} S\left(N\left(\phi_{x}\right)\right) \tag{13.1}
\end{equation*}
$$

where to conclude $\chi(N)=\max _{\rho} \chi(N, \rho)$. If we consider applying the Stinespring dilation theorem to $N$ s.t. $N(\omega)=\operatorname{Tr}_{E}\left(V \omega V^{\dagger}\right)$, then $S\left(N\left(\phi_{x}\right)\right)$ is simply the entanglement of $V\left|\phi_{x}\right\rangle$, and it follows

$$
\begin{equation*}
\chi(N, \rho)=S(N(\rho))-E_{F}\left(V \rho V^{\dagger}\right) \tag{13.2}
\end{equation*}
$$

We might be concerned that not all entanglements of formation $E_{F}\left(V \rho V^{\dagger}\right)$ correspond to the minimum average entropy of the corresponding channel $N$. However, the MSW correspondence states that

$$
E_{F}\left(\rho^{B E}\right)=\min _{\{p, \phi\} \text { s.t. } \sum_{x} p_{x} \phi_{x}=\rho} \sum_{x} p_{x} S\left(\operatorname{tr}_{E} \phi_{x}^{B E}\right)
$$

for any bipartite state $\rho$.
Applying it to the Stinespring dilation of $N_{A \rightarrow B}$, we have

$$
E_{F}\left(V \rho V^{\dagger}\right)=\min _{\{p, \phi\} \text { s.t. } \sum_{x} p_{x} \phi_{x}=\rho} \sum_{x} p_{x} S\left(\operatorname{tr}_{E} V \phi_{x} V^{\dagger}\right)
$$

which guarantees that equation (13.2) holds.

### 13.4 Entanglement-Assisted Capacity

The discussion of $S_{\text {min }}$ and $\chi$ above only delays the pain of performing the optimization problem over $\{p, \phi\}$ such that $\sum_{x} p_{x} \phi_{x}=\rho$. Now we turn to the more well-understood problem of entanglement-assisted capacities.

We want to analyze the additivity of the entanglement-assisted capacity of two independent channels $C_{E}\left(N_{1} \otimes N_{2}\right)$. Define systems $A_{1}^{\prime}, A_{2}^{\prime}$ upon which $N_{1}, N_{2}$ act, respectively, and consider an environment system $A$

$$
\begin{gather*}
C_{E}\left(N_{1} \otimes N_{2}\right)=\max I\left(A: B_{1} B_{2}\right)_{\tau}, \tau=\left(\mathbb{I}_{A} \otimes N_{1}^{A_{1}^{\prime} \rightarrow B_{1}} \otimes N_{2}^{A_{2}^{\prime} \rightarrow B_{2}}\right)\left(\phi^{A A_{1}^{\prime} A_{2}^{\prime}}\right)  \tag{13.1}\\
=\max I\left(A: B_{1} B_{2}\right)_{\psi},|\psi\rangle=\left(\mathbb{I}_{A} \otimes V_{1}^{A_{1}^{\prime} \rightarrow B_{1} E_{1}} \otimes V_{2}^{A_{2}^{\prime} \rightarrow B_{2} E_{2}}\right)|\phi\rangle \tag{13.2}
\end{gather*}
$$

note the distinction between the two definitions, where in the second we purify the two systems independently s.t. they are separable in $\psi$ but not in $\tau$. We will use this independence later. It follows now that we can apply the chain rule sequentially

$$
\begin{gather*}
I\left(A: B_{1} B_{2}\right)_{\psi}=I\left(A: B_{1}\right)+I\left(A: B_{2} \mid B_{1}\right)=  \tag{13.3}\\
=I\left(A: B_{1}\right)+I\left(A B_{1}: B_{2}\right)-I\left(B_{1}: B_{2}\right) \leq I\left(A: B_{1}\right)+I\left(A B_{1}: B_{2}\right) \tag{13.4}
\end{gather*}
$$

as the mutual information is non-negative. Let us consider the terms above independently, starting by $I\left(A B_{1}: B_{2}\right)$. Intuitively, if it was helpful to include $B_{1}$ in addition to $A$, we could have included it into the definition of the 'environment system' WLOG. In this manner, $I\left(A B_{1}: B_{2}\right) \leq I\left(A B_{1} E_{1}: B_{2}\right)$, and symmetrically for $1 \leftrightarrow 2$. We conclude

$$
\begin{equation*}
C_{E}\left(N_{1} \otimes N_{2}\right) \leq I\left(A B_{1} E_{1}: B_{2}\right)+I\left(A B_{2} E_{2}: B_{1}\right) \leq C_{E}\left(N_{1}\right)+C_{E}\left(N_{2}\right) \tag{13.5}
\end{equation*}
$$

Finally, note that this upper bound is always achievable as we can run the channels independently. We conclude

$$
\begin{equation*}
C_{E}\left(N_{1} \otimes N_{2}\right)=C_{E}\left(N_{1}\right)+C_{E}\left(N_{2}\right) \tag{13.6}
\end{equation*}
$$

and therefore we conclude $C_{E}$ is additive and has a single-letter formula that is concave in $\rho$. Moreover, through superdense coding and quantum teleportation (problem set 5 ,
problem 1) it determines the quantum entanglement-assisted capacity $Q_{E}=C_{E} / 2$ as well.

We can contrast these nice properties of the entanglement-assisted capacities $\left(C_{E}\right.$ additive and $C_{E}=2 Q_{E}$ ) with the difficulty of the unassisted capacities ( $C, Q$ ). We only know that $Q \leq C$, but this bound can have large gaps. For instance, the completely dephasing channel has $C=1$ but $Q=0$. On the other hand, the noiseless channel has $Q=C$. This makes it difficult to think of channels as equivalent resources in the absence of free entanglement.

### 13.5 Quantum Reverse Shannon Theorem and Embezzling States

The additivity of $C_{E}$ and the reversibility of the quantum Shannon theorem allows us to think of channels as equivalent resources, associated with a resource theory. In particular, reversibility (defined formally below) allows us to convert between channels at a common "exchange rate".

The quantum reverse Shannon theorem states that any quantum channel can be simulated by an 'unlimited amount' of shared entanglement and $C_{E}$ classical bits, where $C_{E}$ is the entanglement-assisted classical capacity of the channel. In informal resource notation,

$$
\begin{equation*}
\text { unlimited entanglement }+C_{E}[c \rightarrow c] \geq\langle N\rangle \tag{13.1}
\end{equation*}
$$

The lecturer traces a key distinction here between 'unlimited entanglement' and $\infty[q q]$, an arbitrary amount of EPR pairs. The key intuition is that the channel simulation may consume a different amount of EPR pairs for different inputs, and therefore it doesn't suffice to feed some amount of EPR pairs to the protocol. Instead, embezzling states are bipartite states that allow the removal of a small amount of entanglement under local operations into an additional set of registers, while the original state remains approximately the same. That is, heuristically,

$$
\begin{equation*}
|\Gamma\rangle_{A B} \rightarrow \approx|\Gamma\rangle_{A B} \otimes|\psi\rangle_{A^{\prime} B^{\prime}} \tag{13.2}
\end{equation*}
$$

where the A'B' registers are much smaller than AB . A motivating example is the following state.

$$
\begin{equation*}
|\Gamma\rangle=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left|\Phi_{2}\right\rangle^{\otimes i} \otimes|00\rangle^{\otimes n-i}|i i\rangle \tag{13.3}
\end{equation*}
$$

Note that if we define $\Gamma^{\prime}$ based on the removal of the first Bell pair $\Phi_{2}$, i.e.

$$
\begin{equation*}
\left|\Gamma^{\prime}\right\rangle=\frac{1}{\sqrt{n}} \sum_{i=0}^{n-1}\left|\Phi_{2}\right\rangle^{\otimes i} \otimes|00\rangle^{\otimes n-i}|i i\rangle \tag{13.4}
\end{equation*}
$$

then the fidelity $F\left(\Gamma, \Gamma^{\prime}\right)=1-\frac{1}{n}$ and we have 'stolen an EPR pair'.
Another example of an embezzling state is

$$
|\Psi\rangle \propto \sum_{i=1}^{N} \frac{1}{\sqrt{i}}|i i\rangle
$$

for some finite $N$. Embezzling entanglement then looks like

$$
\left(U^{A} \otimes V^{B}\right)|\Psi\rangle^{A B}|00\rangle^{A B} \approx|\Psi\rangle^{A B}\left|\Phi_{2}\right\rangle^{A B}
$$

for some local unitaries $U^{A}$ and $V^{B}$.
We can show that there exist local unitaries $U, V$ such that $F\left((U \otimes V)|\Psi\rangle|00\rangle,|\Psi\rangle\left|\Phi_{2}\right\rangle\right) \geq$ $1-1 / \log n$. Let $\sum_{i=1}^{N} 1 / i=C_{N}$. The Schmidt coefficients of $|\Psi\rangle|00\rangle$ are

$$
\frac{1}{\sqrt{C_{N}}}, \frac{1}{\sqrt{2 C_{N}}}, \frac{1}{\sqrt{3 C_{N}}}, \frac{1}{\sqrt{4 C_{N}}}, \ldots \frac{1}{\sqrt{N C_{N}}}, 0, \ldots 0
$$

whereas the Schmidt coefficients of $|\Psi\rangle\left|\Phi_{2}\right\rangle$ are

$$
\frac{1}{\sqrt{2 C_{N}}}, \frac{1}{\sqrt{2 C_{N}}}, \frac{1}{\sqrt{4 C_{N}}}, \frac{1}{\sqrt{4 C_{N}}}, \frac{1}{\sqrt{6 C_{N}}}, \frac{1}{\sqrt{6 C_{N}}}, \ldots, \frac{1}{\sqrt{2 N C_{N}}}, \frac{1}{\sqrt{2 N C_{N}}}
$$

Therefore, the maximum fidelity is

$$
\begin{aligned}
& \left(\frac{1}{\sqrt{C_{N}}}, \frac{1}{\sqrt{2 C_{N}}}, \ldots \frac{1}{\sqrt{N C_{N}}}, 0, \ldots 0\right) \cdot\left(\frac{1}{\sqrt{2 C_{N}}}, \frac{1}{\sqrt{2 C_{N}}}, \frac{1}{\sqrt{4 C_{N}}}, \frac{1}{\sqrt{4 C_{N}}}, \ldots \frac{1}{\sqrt{2 N C_{N}}}\right) \\
& \geq \frac{1}{C_{N}}\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{6}+\frac{1}{6}+\ldots+\frac{1}{N}\right) \\
& \geq \frac{1}{C_{N}}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{\lfloor N / 2\rfloor}\right) \\
& \geq \frac{\ln N / 2}{\ln N}=1-\frac{1}{\log N}
\end{aligned}
$$

Note that entanglement embezzlement preserves the original superposition across the bipartite state $|\Psi\rangle$, which is crucial for the quantum reverse Shannon theorem.

### 13.6 Quantum Capacity

In resource notation, we define the quantum capacity by

$$
\begin{equation*}
\langle N\rangle \geq Q(N)[q \rightarrow q] \tag{13.1}
\end{equation*}
$$

In general, $Q \leq Q_{F} \leq Q_{2}$, that is feedback and two-way channels increase the capacity of quantum information over the channel, however, sending additional classical communication $[c \rightarrow c]$ does not help. Mathematically, the quantum capacity is defined by the maximum amount distallable entanglement that can be generated with the channel

$$
\begin{equation*}
Q(N)=\max _{\psi_{A A^{\prime}}} E_{D}\left(\left(\mathbb{I}_{A} \otimes N_{A^{\prime} \rightarrow B}\right) \psi_{A A^{\prime}}\right) \tag{13.2}
\end{equation*}
$$

The Choi-Jamiolkowski state $\omega(N)$ is

$$
\begin{equation*}
\omega(N)=\left(\mathbb{I}_{A} \otimes N_{A^{\prime} \rightarrow B}\right)\left(\Phi_{A A^{\prime}}\right)=\frac{1}{d_{A}} \sum_{i j}|i\rangle\langle j| \otimes N(|i\rangle\langle j|) \tag{13.3}
\end{equation*}
$$

where $\Phi_{A A^{\prime}}=\frac{1}{\sqrt{d_{A}}} \sum_{i}|i i\rangle$ is the maximally mixed state. This state presents an interesting interpretation of the channel, as the mapping $N \rightarrow \omega(N)$ is an isomorphism (known as the Choi-Jamiolkowski isomorphism). We can show that this mapping is isomorphic by identifying the inverse map: conditioning on the first subsystem of $\omega(N)$, we obtain $N(|i\rangle\langle j|)$ for every basis element $|i\rangle\langle j|$, which suffices to define the channel $N$.

We can use $\omega$ to simulate $N$ as follows. Consider three registers $E, A, A^{\prime}$, where $E$ holds a state $\rho$ and $A, A^{\prime}$ share the maximally mixed state $\Phi_{A A^{\prime}}$. Consider the quantum circuit defined by feeding $A^{\prime}$ through the quantum channel $N$, and a Bell state measurement is jointly made on the registers $E, A$. If the bell state measurement returns a string $j$, then the state resulting on the register $A^{\prime} \rightarrow B$ is $N\left(\sigma_{j} \rho \sigma_{j}^{\dagger}\right)$. In this manner, $j=0$ with probability $d_{A}^{-2}$, and then $N\left(\sigma_{j} \rho \sigma_{j}^{\dagger}\right)=N(\rho)$. It follows $\omega(N)$ can simulate $N$ with probability $d_{A}^{-2}$ and in this manner,

$$
\begin{equation*}
E_{D}(\omega(N))>0 \Longleftrightarrow Q(N)>0 \tag{13.4}
\end{equation*}
$$

Unfortunately, it is still largely unknown when $Q(N)=0$. A case that $Q(N)=0$ is when $N$ is entanglement-breaking, or equivalently when $\omega(N) \in$ Sep is separable.

We can generalize entanglement-breaking channels in two different ways. One way to generalize the entanglement-breaking property is to consider antidegradable channels.

We say $N$ is antidegradable if there exists some map $\varepsilon$ such that $N=\varepsilon \circ N^{c}$ (i.e. Bob gets less information than Eve). Conversely, we say that $N$ is degradable if there
exists some map $\varepsilon$ such that $N^{c}=\varepsilon \circ N$ (i.e. Bob gets more information than Eve). For example, the erasure channel with erasure probability $p$ is degradable for $p \leq 1 / 2$ and antidegradable for $p \geq 1 / 2$. In general, however, not all channels are either degradable or antidegradable.

We can show using the no-cloning theorem that antidegradable channels also have zero quantum capacity (without classical feedback). Interestingly, degradable channels have additive capacity.

