8.S372/18.S996 Quantum Information Science III
 Fall 2020
 Lecture 14: October 20, 2020
 Lecturer: Aram Harrow
 Scribe: Leon Ding, Thiago Bergamaschi

14.1 Quantum Capacity formula

For a given quantum channel $N_{A \rightarrow B}$, consider the definition of an environment system under the Stinespring representation $N(\rho)=\operatorname{Tr}_{E}\left[V \rho V^{\dagger}\right]$. We define the coherent information as

$$
\begin{equation*}
I_{C}(\rho, N)=S(N(\rho))-S\left(N^{c}(\rho)\right)=S(B)-S(E) \tag{14.1}
\end{equation*}
$$

Where the superscript c denotes tracing out the complement subspace. For example, if in $N(\rho)$ we trace out subspace E, then in $N^{c}(\rho)$ we trace out subspace B. Under this definition, we can now define the quantum capacity according to the LSD theorem (Lloyd, Shor, Devetak):

$$
\begin{align*}
Q(N) & =\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\rho} I_{c}\left(\rho, N^{\otimes n}\right) \tag{14.2}\\
& =\max _{\rho} I_{c}(\rho, N) \quad \text { if } N \text { is degradable } \tag{14.3}
\end{align*}
$$

Let us consider the definition of I_{c} through the purification of the initial state. In particular, let $\phi_{A A^{\prime}}$ be a pure state, and consider the subsystems B, E resulting of feeding A^{\prime} through the channel N. Under the tri-partite state $\tau_{A B E}$,

$$
\begin{equation*}
I_{c}=S(B)_{\tau}-S(E)_{\tau}=S(B)-S(A B)=-S(A \mid B)=\frac{I(A: B)-I(A: E)}{2} \tag{14.4}
\end{equation*}
$$

Likewise we can consider the entanglement of distillation $E_{D}(\rho)$

$$
\begin{equation*}
E_{D}\left(\rho_{A B}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\Lambda: A_{1} \cdots A_{n} \rightarrow A E^{\prime}}\left[S\left(B_{1} \cdots B_{n}\right)-S\left(A B_{1} \cdots B_{n}\right)\right] \tag{14.5}
\end{equation*}
$$

We can define metric of capacity using an arbitrary penalty on the conditional entropy between A and B called the Hare-brained capacity:

$$
\begin{equation*}
C_{\mathrm{HB}}(N)=\max H(B)-10 H(B \mid A) \tag{14.6}
\end{equation*}
$$

While this penality is arbitrary, it still satisfies

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\rho} C_{\mathrm{HB}}\left(N^{\otimes n}, \rho\right)=C(N) \tag{14.7}
\end{equation*}
$$

14.2 Understanding the Capacity Formula

1. N is antidegradable. If $E=E_{B} E_{E}, I(A: E)=I\left(A: E_{B}\right)+I\left(A: E_{E} \mid E_{B}\right) \geq$ $I\left(A: E_{B}\right)=I(A: B)$
$I_{C} \leq 0$. Though this statement does not hold if allowing feedback.
2. Consider a random Pauli channel, which applies a random Pauli matrix with some respective probability. $N(\rho)=\left(1-p_{x}-p_{y}-p_{z}\right) \rho+p_{x} X \rho X+p_{y} Y \rho Y+p_{z} Z \rho Z$ Applying this channel,

$$
\begin{equation*}
(I \otimes N) \Phi=p_{I} \Psi_{0}+p_{x} \Psi_{1}+p_{y} \Psi_{2}+p_{z} \Psi_{3} \tag{14.1}
\end{equation*}
$$

where $\left|\Psi_{i}\right\rangle=\left(I \otimes \sigma_{i}\right)|\Psi\rangle$
A purification of this density matrix is the wavefunction

$$
\begin{equation*}
\sqrt{p_{I}}\left|\Psi_{0}\right\rangle_{A B}|0\rangle_{E}+\sqrt{p_{X}}\left|\Psi_{1}\right\rangle_{A B}|1\rangle_{E}+\sqrt{p_{Y}}\left|\Psi_{2}\right\rangle_{A B}|2\rangle_{E}+\sqrt{p_{Z}}\left|\Psi_{3}\right\rangle_{A B}|3\rangle_{E} \tag{14.2}
\end{equation*}
$$

which has $S(B)=1$ and $S(E)=H(\vec{p})$.
A special case of this is the depolarizing channel D_{p}, with $S(E)=H_{2}(p)+$ $p \log 3$.
"Hashing bound" cf. hashing method to check if $x \stackrel{?}{=} y$. We choose some random function $f \rightarrow\{0,1\}^{k}$ and check if $f(x) \stackrel{?}{=} f(y)$. If $x=y$, we necessarily have $f(x)=f(y)$, and if $x \neq y$, the probability that $f(x)=f(y)$ can be be shown to be small $\operatorname{Pr}[f(x)=f(y)] \sim 2^{-k}$
3. Sometimes preprocessing helps

$$
\begin{equation*}
\rho=\Phi_{A, B} \otimes\left(\frac{I}{2}\right) A_{2} \tag{14.3}
\end{equation*}
$$

$I_{C}=0$, preprocessing results in $\rightarrow 1$ or $I_{C}\left(I / 2, D_{p}\right)=1-H_{2}(p)-p \log 3$.
4. Sometimes entangled inputs help. quant-ph/9706061 for $p \approx 0.19, I_{C}\left(I / 2, D_{p}\right)<$ $\frac{1}{5} I_{C}\left(\frac{|00000\rangle\langle 00000|+|11111\rangle\langle 11111|}{2}, D_{p}^{\otimes 5}\right)$
5. Superactivation $\exists N_{1}, N_{2}$ s.t. $Q\left(N_{1}\right)=Q\left(N_{2}\right)=0$, but $Q\left(N_{1} \otimes N_{2}\right)>0$

An example of this is with $N_{1}=50 \%$ erasure channel and N_{2} a PPT channel with private $C \propto \rho>0(? ? ?)$. This satisfied $Q\left(N_{1} \otimes N_{2}\right)>0$ according to Smith-Yard, Science 2008, arxiv:0807.4935.

14.3 PPT Channels

The partial transpose of a density matrix is defined as

$$
\begin{equation*}
\rho^{\Gamma}=(I \otimes T) \rho \tag{14.1}
\end{equation*}
$$

Where for example

$$
\begin{equation*}
(|i\rangle\langle j| \otimes|k\rangle\langle l|)^{\Gamma}=|i\rangle\langle j| \otimes|l\rangle|k\rangle \tag{14.2}
\end{equation*}
$$

Let us start to build some intuition on this operation. Let PPT be the set of density matrices that under partial transpose remain positive semi-definite, i.e.

$$
\begin{equation*}
\operatorname{PPT}=\left\{\rho: \rho^{\Gamma} \geq 0\right\} \tag{14.3}
\end{equation*}
$$

Since all psd matrices are symmetric, $\rho^{T}=\rho$ is psd. Thus, Sep \subseteq PPT. On the pset, you will show that if $\rho \in D_{d^{2}}$ and $\rho^{\Gamma} \geq 0$, then $\operatorname{Tr}\left[\rho^{\Gamma} \Phi_{d}\right] \leq 1 / d$. Let us now consider the composition of the partial transpose and LOCC operations:

Claim If $\rho \in \mathrm{PPT}$, and \mathcal{E} is a LOCC operation, then $\mathcal{E}(\rho) \in \mathrm{PPT}$. This result extends to SLOCC (stochastic LOCC).

To quickly recap some definitions, local operations and classical communication channels are described by

$$
\begin{equation*}
\rho \rightarrow(U \otimes V) \rho(U \otimes V)^{\dagger} \tag{14.4}
\end{equation*}
$$

Measurement channels,

$$
\begin{equation*}
\sum_{k}\left(E_{k} \otimes I\right) \rho\left(E_{k} \otimes I\right)^{\dagger} \text { with } \sum E_{k}^{\dagger} E_{k} \leq \mathbb{I} \tag{14.5}
\end{equation*}
$$

and stochastic LOCC

$$
\begin{equation*}
\rho \rightarrow\left(E_{k} \otimes I\right) \rho\left(E_{k} \otimes I\right)^{\dagger} \text { or }\left(I \otimes E_{k}\right) \rho\left(I \otimes E_{k}\right)^{\dagger} \tag{14.6}
\end{equation*}
$$

In general,

$$
\begin{equation*}
\rho \rightarrow(A \otimes B) \rho(A \otimes B)^{\dagger} \tag{14.7}
\end{equation*}
$$

Where A, B are arbitrary or perhaps invertable.

$$
\begin{equation*}
\left((A \otimes B) \rho(A \otimes B)^{\dagger}\right)^{\Gamma}=(A \otimes \bar{B}) \rho^{\Gamma}(A \otimes \bar{B})^{\dagger} \geq 0 \quad \text { if } \rho^{\Gamma} \geq 0 \tag{14.8}
\end{equation*}
$$

Where is this useful? D_{p} is never antidegradable for $p<1$, but is PPT for p large enough.

$$
\rho \in \mathrm{PPT} \Longrightarrow E_{D, 2}(\rho)=0 . \mathrm{PPT}=\text { Sep only if } d_{A}=2, d_{B}=3
$$

14.3.1 States

As previously argued, there is a straightforward inclusion statement between the set of separable states and PPT

$$
\begin{equation*}
\mathrm{Sep} \subset \mathrm{PPT} \subset \text { All } \tag{14.9}
\end{equation*}
$$

Doherty, Parrilo and Spedalieri defined the DPS hierarchy (quant-ph/0308032), based on iteratively extending approximations to the set of entangled states.

$$
\begin{equation*}
\mathrm{PPT}=\mathrm{DPS}_{1} \supset \mathrm{DPS}_{2} \supset \cdots \supset \mathrm{DPS}_{\infty}=\mathrm{Sep} \tag{14.10}
\end{equation*}
$$

Each DPS_{k} requires time $d^{\mathcal{O}(k)}$ to search, so there is a tractable test for entanglement that increases exponentially with k.

14.3.2 Operations

$$
\begin{equation*}
1-\mathrm{LOCC} \supset \mathrm{LOCC} \supset \mathrm{Sep} \supset \mathrm{PPT} \supset \mathrm{All} \tag{14.11}
\end{equation*}
$$

PPT operations map PPT states onto PPT states. PPT channels always output PPT states.

