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14.1 Quantum Capacity formula

For a given quantum channel NA→B, consider the definition of an environment system

under the Stinespring representation N(ρ) = TrE[V ρV †]. We define the coherent

information as

IC(ρ,N) = S(N(ρ))− S(N c(ρ)) = S(B)− S(E) (14.1)

Where the superscript c denotes tracing out the complement subspace. For example, if

in N(ρ) we trace out subspace E, then in N c(ρ) we trace out subspace B. Under this

definition, we can now define the quantum capacity according to the LSD theorem

(Lloyd, Shor, Devetak):

Q(N) = lim
n→∞

1

n
max
ρ
Ic(ρ,N

⊗n) (14.2)

= max
ρ
Ic(ρ,N) if N is degradable (14.3)

Let us consider the definition of Ic through the purification of the initial state. In

particular, let φAA′ be a pure state, and consider the subsystems B, E resulting of

feeding A′ through the channel N . Under the tri-partite state τABE,

Ic = S(B)τ − S(E)τ = S(B)− S(AB) = −S(A|B) =
I(A : B)− I(A : E)

2
(14.4)

Likewise we can consider the entanglement of distillation ED(ρ)

ED(ρAB) = lim
n→∞

1

n
max

Λ:A1···An→AE′
[S(B1 · · ·Bn)− S(AB1 · · ·Bn)] (14.5)

We can define metric of capacity using an arbitrary penalty on the conditional

entropy between A and B called the Hare-brained capacity:

CHB(N) = maxH(B)− 10H(B|A) (14.6)

While this penality is arbitrary, it still satisfies

lim
n→∞

1

n
max
ρ
CHB(N⊗n, ρ) = C(N) (14.7)
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14.2 Understanding the Capacity Formula

1. N is antidegradable. If E = EBEE, I(A : E) = I(A : EB) + I(A : EE|EB) ≥
I(A : EB) = I(A : B)

IC ≤ 0. Though this statement does not hold if allowing feedback.

2. Consider a random Pauli channel, which applies a random Pauli matrix with some

respective probability. N(ρ) = (1− px − py − pz)ρ+ pxXρX + pyY ρY + pzZρZ

Applying this channel,

(I ⊗N)Φ = pIΨ0 + pxΨ1 + pyΨ2 + pzΨ3 (14.1)

where |Ψi〉 = (I ⊗ σi) |Ψ〉

A purification of this density matrix is the wavefunction

√
pI |Ψ0〉AB |0〉E +

√
pX |Ψ1〉AB |1〉E +

√
pY |Ψ2〉AB |2〉E +

√
pZ |Ψ3〉AB |3〉E (14.2)

which has S(B) = 1 and S(E) = H(~p).

A special case of this is the depolarizing channel Dp, with S(E) = H2(p) +

p log 3.

”Hashing bound” cf. hashing method to check if x
?
= y. We choose some random

function f → {0, 1}k and check if f(x)
?
= f(y). If x = y, we necessarily have

f(x) = f(y), and if x 6= y, the probability that f(x) = f(y) can be be shown to

be small Pr[f(x) = f(y)] ∼ 2−k

3. Sometimes preprocessing helps

ρ = ΦA,B ⊗
(
I

2

)
A2 (14.3)

IC = 0, preprocessing results in → 1 or IC(I/2, Dp) = 1−H2(p)− p log 3.

4. Sometimes entangled inputs help. quant-ph/9706061 for p ≈ 0.19, IC(I/2, Dp) <
1
5
IC( |00000〉〈00000|+|11111〉〈11111|

2
, D⊗5

p )

5. Superactivation ∃N1, N2 s.t. Q(N1) = Q(N2) = 0, but Q(N1 ⊗N2) > 0

An example of this is with N1 = 50% erasure channel and N2 a PPT channel with

private C ∝ ρ > 0(???). This satisfied Q(N1⊗N2) > 0 according to Smith-Yard,

Science 2008, arxiv:0807.4935.
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14.3 PPT Channels

The partial transpose of a density matrix is defined as

ρΓ = (I ⊗ T )ρ (14.1)

Where for example

(|i〉 〈j| ⊗ |k〉 〈l|)Γ = |i〉 〈j| ⊗ |l〉 |k〉 (14.2)

Let us start to build some intuition on this operation. Let PPT be the set of density

matrices that under partial transpose remain positive semi-definite, i.e.

PPT = {ρ : ρΓ ≥ 0} (14.3)

Since all psd matrices are symmetric, ρT = ρ is psd. Thus, Sep ⊆ PPT. On the pset,

you will show that if ρ ∈ Dd2 and ρΓ ≥ 0, then Tr [ρΓΦd] ≤ 1/d. Let us now consider

the composition of the partial transpose and LOCC operations:

Claim If ρ ∈ PPT, and E is a LOCC operation, then E(ρ) ∈ PPT. This result

extends to SLOCC (stochastic LOCC).

To quickly recap some definitions, local operations and classical communication

channels are described by

ρ→ (U ⊗ V )ρ(U ⊗ V )† (14.4)

Measurement channels,∑
k

(Ek ⊗ I)ρ(Ek ⊗ I)† with
∑

E†kEk ≤ I (14.5)

and stochastic LOCC

ρ→ (Ek ⊗ I)ρ(Ek ⊗ I)† or (I ⊗ Ek)ρ(I ⊗ Ek)† (14.6)

In general,

ρ→ (A⊗B)ρ(A⊗B)† (14.7)

Where A,B are arbitrary or perhaps invertable.

((A⊗B)ρ(A⊗B)†)Γ = (A⊗ B̄)ρΓ(A⊗ B̄)† ≥ 0 if ρΓ ≥ 0 (14.8)

Where is this useful? Dp is never antidegradable for p < 1, but is PPT for p large

enough.

ρ ∈PPT =⇒ ED,2(ρ) = 0. PPT = Sep only if dA = 2, dB = 3.
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14.3.1 States

As previously argued, there is a straightforward inclusion statement between the set

of separable states and PPT

Sep ⊂ PPT ⊂ All (14.9)

Doherty, Parrilo and Spedalieri defined the DPS hierarchy (quant-ph/0308032), based

on iteratively extending approximations to the set of entangled states.

PPT = DPS1 ⊃ DPS2 ⊃ · · · ⊃ DPS∞ = Sep (14.10)

Each DPSk requires time dO(k) to search, so there is a tractable test for entanglement

that increases exponentially with k.

14.3.2 Operations

1− LOCC ⊃ LOCC ⊃ Sep ⊃ PPT ⊃ All (14.11)

PPT operations map PPT states onto PPT states. PPT channels always output

PPT states.


