
8.S372/18.S996 Quantum Information Science III Fall 2020

Lecture 15: October 20, 2020

Lecturer: Aram Harrow Scribe: Michael DeMarco, Leon Ding

15.1 Proofs of the quantum capacity formula

1. Coherent Classical Communication and CE

2. Decoupling and merging

The first proof is a simpler one that Aram came up with, but has fewer generalizable

insights for quantum information.

Recall that the formal definition of the quantum capacity is:

Q = lim
ε→0

lim
n→∞

1

n
log max

{
d : d-dimensional subspace V of An s.t. ∀ |ψ〉 ∈ V, D(N⊗n(ψ)) ≈ε ψ

}
(15.1)

Remember that ≈ε means approximately equal with some error proportional to ε, the

log of a dimension corresponds to a number of qubits, and D is a decoding map.

15.1.1 Detour: Cobits

A coherent bit, or cobit (can think of this as intermediate between classical communi-

cation and quantum),

[q → q] : a |0〉A + b |1〉A → a |0〉B + b |1〉B (15.2)

Or more succinctly,

|x〉A → |x〉B for x ∈ {0, 1}, isometry (15.3)

Consider classical communication as [c → c] : |x〉A → |x〉B ⊗ |x〉E using a CNOT

gate from |ψ〉A ⊗ |0〉 → (B,E).
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Instead of giving one bit to the environment, what happens if one of the outputs

remains on Alice’s side?

[c→ cc] |x〉A → |x〉A ⊗ |x〉B (15.4)

This is the cobit channel. Now, [q → q] ≥ [c→ cc] ≥ [c→ c]. In fact, we will see that

asymptotically [c→ cc] = 1
2
([q → q] + [qq])/2.

This equality is true because of decoupling. Now, cbits (in input or output) do not

necessarily leak to E, or at least there is nothing in the environment that leaks to E.

Output Rule (concerning the case with decoupled outputs): super-dense coding

[q → q] + [qq] ≥ 2[c → c] does not leak to environment, hence if we do not throw out

bits we get a free upgrade to [q → q] + [qq] ≥ 2[c → cc]. Here, instead of performing

a bell-state measurement at the end of the circuit, Bob just applies a unitary U to

transform the bell states back to the computational basis.

In general, coherently decoupled [c → c] (ie where the environment cannot break

superpositions of outputs) can turn into [c→ cc].

Consider the above example circuit for entanglement assisted communication. Here,
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Alice and Bob share n copies of the Bell state |Φ〉 (of course, it doesn’t have to be a

Bell state in the general case). Alice performs a controlled Pauli operation depending

on some code-word cm, N is a noisy channel, and D is Bob’s decoder which produces

m. Bob can erase the content of |φm〉 using his knowledge of m, in which case he is

left with a cobit.

Suppose that N is a cbit channel, m ∈ {0, 1}. Consider the circuit:

This is a Vernom cipher or one-time pad. Here, Bob may unitarily transform his result

into |m〉 |x〉, without Eve determining the content of m. Cobits are, in a sense, the

quantum version of the one-time pad.

In fact, the ebit cost is S(A):

and here 〈N〉+ S(A)[qq] ≥ I(A : B)[c→ cc]

Input Rule: cobits in decoupled inputs yield ebit teleportation:

First, Alice, instead of doing a Bell measurement, does a unitary transformation from

the Bell basis into the standard basis. In normal teleportation, this state would be
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used to control a controlled-σx operation, and Bob would be left with the teleported

state. Instead of using this classical communication of the bit, we now use a cobit to

transmit the information to Bob, with the additional benefit of retaining to two ebits.

In resource notation, this process has produced 2[c → cc] + [qq] ≥ 2[qq] + [q → q].

However, considering coherent superdense coding [qq] + [q → q] ≥ 2[c → cc]. Hence

2[c→ cc] = [qq] + [q → qq], where the equality holds catalytically. This means that we

had one unit of [qq] which was just there as a catalyst.

15.1.2 Coherent Classical Communication and CE

Combining this with our earlier observation, we have that 〈N〉+S(A)[qq] ≥ I(A:B)
2

([q → q] + [qq]).

This implies:

S(A)− I(A : B)

2
=

2S(A)− (S(A) + S(B)− S(E))

2
=
I(A : E)

2
(15.5)

which implies that:

〈N〉+
1

2
I(A : E)[qq] ≥ I(A : B)

2
[q → q] (15.6)

This is called the ’father’ protocol because we can combine it with [q → q] ≥ [qq]

(entanglement distribution) to get that:

〈N〉 ≥ I(A : B)− I(A : E)

2
[q → q] = IC [q → q] (15.7)

where the equality follows from expanding mutual information in terms of entropies.

(requires catalytic entanglement use). If we combine the ’father’ protocol with super-

dense coding, we get

〈N〉+ S(A)[qq] ≥ I(A : B)[c→ c] (15.8)

Aside: there is also a ’mother’ protocol:

〈ρ〉+
1

2
I(A : E)[q → q] ≥ I(A : B)

2
[qq] (15.9)

which we can combine with teleportation to get:

〈ρ〉+ I(A : E)[c→ c] ≥ Ic(A〉B)[qq] (15.10)

More details at quant-ph=0307031 and quant-ph/03/08/0447.
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15.1.3 Decoupling and Merging

Quantum state merging and negative information quant-ph/0512247 and quant-ph/0606225.

The ’mother’ protocol leads to the mother of all protocols.

The merging task: purify ρAB to ψABR. Think of R as a reference system that keeps

track of the original message. Goal is for Alice to transmit her half of the state to Bob.

Allow free LOCC, ebit cost of merging is S(A|B). If S(A|B) > 0, merging is possible

by consuming S(A|B) + δ ebits ∀δ > 0. If S(A|B) < 0, then merging is possible while

generating −S(A|B)− δ ebits ∀δ > 0. Either way, we use I(A : R) cbits.

Examples:

1. ρ = I
2

A ⊗ σB, |ψ〉ABR = |ψ〉AR ⊗ |φ〉BR
′

comm cost is 1.

2. ρ = φAB, comm cost is −2

(Proof to be covered in detail next lecture.)


