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Lecture 16: October 27, 2020

Lecturer: Aram Harrow Scribe: Joshua Lin, Andrey Boris Khesin

In this lecture, we will be covering random states and unitaries. One application of

random unitaries is that we can use them to destroy information in a certain sense (see

the last lecture). A certain theme that we will see repeat is ‘concentration of measure’,

as we take the limit of high dimensions (e.g. if we have large quantum systems), certain

natural measures will concentrate along physically interesting subspaces.

16.0.4 Scalar Random Variables

Lemma 8 (Markov’s Inequality)

X ≥ 0 =⇒ Pr[X ≥ aEX] ≤ 1

a

To get a tighter bound, use higher moments:

Lemma 9 (Chebyshev’s Inequality)

EX = µ, E(X − µ)2 = σ2 =⇒ Pr[(X − µ)2 ≥ aσ] ≤ 1

a2

This is an example of the “Bernstein trick”:

f(x) > 0, f ′(x) ≥ 0 =⇒ Pr[X ≥ a] = Pr[f(x) ≥ f(a)] ≤ E[f(x)]

f(a)

in other words, to derive Chebyshev’s Inequality, we apply Markov’s Inequality to a

transformed version of the random variable, where we take f(x) to be squared difference

from expectation (caveat, f is not monotone here).

Note that Chebyshev’s inequality is really weak for things like Gaussian random

variables, it tells us that the probably of having a gaussian r.v. 5σ above average is

only bounded by 1/25 (we know that it’s very small in reality). Instead, use f(x) = eλx

in Bernstein trick, and we get the much better:

X ∼ N (µ = 0, σ2 = 1), Pr[X ≥ a] = eλ
2/2−λa
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This bound is funny because λ is a parameter we are free to choose. Clearly, some

values of λ give better bounds than others, optimal bound at

λ = a =⇒ Pr[X ≥ a] ≤ e−a
2/2

Note that this is a much better bound than just using Chebyshev’s Inequality. Actually

this bound is pretty much optimal; it turns out it’s only off by roughly a constant factor

in this particular example - and the only thing we really needed to know is EeλX called

the ‘moment generating function’, :

EeλX = 1 + λEX +
λ2

2
EX2 + . . .

Lemma 10 (Chernoff bound) X1, . . . , Xn i.i.d Pr[Xi = 1] = Pr[Xi = −1] = 1
2
, and

let X =
∑

iXi.

E[eλX ] = E[eλX1 ]n = (cosh(λ))n ≤ enλ
2/2

Pr[X ≥ δn] ≤ enλ
2/2−nδλ = enδ

2/2 if λ = δ

We get similar bounds if |Xi| ≤ 1 and EXi = 0. Intuitively the same bound still

applies, because we will only get less deviation if we allow the random variables to be

between −1 and 1.

16.0.5 Random Vectors

Gaussian random vectors look like:

|g〉 =

g1...
gd

 , gi ∈ NC

(
0,

1

d

)
, gi = xi + iyi, xi, yi ∈ N

(
0,

1

2d

)

which gives us E〈g|g〉 = 1, and p(|g〉) =
(
d
π

)d
e−d〈g|g〉. We can use this to generate a

random unit vector:

|v〉 =
|g〉√
〈g|g〉

.

Gaussian vectors are great because the entries are independent, and the distribution is

rotationally symmetric (i.e. it is symmetric under actions of U(d)). It turns out that

the Gaussian distribution is the only distribution with these properties.

Note that we have E[gi] = 0 since the distribution of gi is invariant under phase

rotations due to the unitary invariance of the gaussian vector. The only way to get

nonzero expectations is to write down ‘scalar quantities’ under the group invariance:

E[gig
∗
j ] =

δij
d
, E[|g〉〈g|] =

∑
ij

E[gig
∗
j ]|i〉〈j| =

I

d
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E[gigjg
∗
kg
∗
l ] = E[gig

∗
k]E[gjg

∗
l ] + E[gig

∗
l ]E[gjg

∗
k] =

δikδjl + δilδjk
d2

by Isserlis’ (/Wick’s) theorem - since we know the only way to get nonzero answers out

is to pair up the g factors.

E[|g, g〉〈g, g|] =
1

d2

∑
ij

|i, j〉〈i, j|+ |i, j〉〈j, i| = I + SWAP

d2

where the SWAP operator swaps the two registers. In general, using Wick’s theorem:

E[gi1 . . . ging
∗
j1
. . . g∗jn ] =

1

dn

∑
π∈Sn

n∏
l=1

δil,jπ(l)

E[|g〉〈g|⊗n] =
1

dn

∑
π∈Sn

Pπ, Pπ =
∑
i1,...,in

|i1, . . . , in〉〈iπ(1), . . . , iπ(n)|

where Sn is the symmetric group, π is a permutation, and we are essentially just

summing over ways of matching up the g factors. Now, how do we interpret this

quantity?

Πsym :=
1

n!

∑
π∈Sn

Pπ = projector onto symmetric subspace

SymnCd = {|ψ〉 ∈ (Cd)⊗n : Pπ|ψ〉 = |ψ〉 ∀π ∈ Sn}

Note that we can prove the above fact in much bigger generality, suppose I have an

arbitrary finite group G with unitary rep r : G → U(V ), let V G be the G-invariant

vectors in V , then the claim is that:

Π =
1

|G|
∑
g∈G

r(g) projects onto V G

First, note that Π itself is invariant under G-action:

r(h)Π = r(h)
1

|G|
∑
g

r(g) = |G|−1
∑
g

r(hg) = |G|−1
∑
g

r(g) = Π

note that group acts freely on itself in the sense that its action is 1-to1. So, that means

r(h)Π|ψ〉 = Π|ψ〉, so Im(Π) ⊂ V G, convsersely |ψ〉 ∈ V G =⇒ Π|ψ〉 ∈ Im(Π), finally,

to prove that it’s a projector:

Π†Π = Ehr(h−1)Π = Π

so, going back to what we had before,

E[|g〉〈g|⊗n] =
1

dn

∑
π∈Sn

Pπ =
n!

dn
Πsym
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Now, what about random unit vectors? Note that |g〉 = r|u〉 with r, |u〉 independent,

so that:

E[|g〉〈g|⊗n] = E[r2n]E[|u〉〈u|⊗n]

so, we know in fact that:

E[|u〉〈u|⊗n] =
Πsym

trΠsym

=⇒ SymnCd = span{|ψ〉⊗n : |ψ〉 ∈ Cd}

If we have another basis p ∈ Pn where p describes a partition, describing a ‘type’ of

unit vector:

|p〉 =

(
n

np

)−1/2 ∑
x∈Tnp

|x〉

E[|u〉〈u|⊗n] =
Πsym(
d+n−1
n

) =

∑
π Pπ

d(d+ 1) . . . (d+ n− 1)

1 ≤ E[r2n] =
d(d+ 1) . . . (d+ n− 1)

dn
≤ en

2/2d

So, if d � n, we have a concentration of measure of the gaussian vectors around the

unit vectors.

16.0.6 Applications to Entanglement of random states

Suppose that we have a uniformly random |ψ〉 ∈ CdA ⊗CdB , then how entangled is ψ,

in other words, what is ES(A)ψ?

ES(A)ψ ≥ ES2(ψA) = −E log tr ψ2
A

where S2(ρ) = − log tr ρ2 is the Renyi entropy. But, by concavity of log, we have:

ES(A)ψ ≥ − logE tr ψ2
A

Now, note this cool fact:

tr(X ⊗ Y )SWAP = tr[XY ]

which we can draw as a circuit. This gives us:

trψ2
A = tr(ψA ⊗ ψA)SWAP = tr[(ψA1B1 ⊗ ψA2B2)(SWAPA1A2 ⊗ IB1B2)]

But now, we have that:

Etr(ψ2
A) = tr

[
E(ψA1B1 ⊗ ψA2B2) (SWAPA1A2 ⊗ IB1B2)

]
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= tr
SWAPA1A2 + SWAPB1B2

dAdB(dAdB + 1)
=

dAd
2
B + d2AdB

dAdB(dAdB + 1)
=

dA + dB
dAdB + 1

So, putting all this together, we get that

ES(A)ψ ≥ log

(
dAdB + 1

dA + dB

)
So, if the dimensions are equal, our bound is roughly log(d)−1, and if we have dA � dB,

then our bound looks instead like log(dA)− dA
dB

(which means you have a small correction

to that of the maximally entangled state).

The takeaway is that random states are close to maximally entangled, with small

corrections due to the finiteness of the dimensions.


