17.1 Entanglement of random states

Recall that last time we studied entanglement in random states. We showed that for $|\psi\rangle \in \mathbb{C}^{d_{a}} \otimes \mathbb{C}^{d_{b}}$,

$$
\begin{align*}
\mathbb{E} S(A)_{\psi} & \geq \mathbb{E} S_{2}\left(\psi_{A}\right) \tag{17.1}\\
& \geq-\log \mathbb{E} \operatorname{tr} \psi_{A}^{2} \tag{17.2}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbb{E} \operatorname{tr} \psi_{A}^{2}=\frac{d_{A}+d_{B}}{d_{A} d_{B}+1} \tag{17.3}
\end{equation*}
$$

For $d=d_{A}=d_{B}$, we get

$$
\begin{equation*}
\mathbb{E} S(A)_{\psi} \geq \log \frac{d^{2}+1}{2 d} \geq \log (d)-1 \tag{17.4}
\end{equation*}
$$

For $d_{A} \ll d_{B}$, we get

$$
\begin{equation*}
\mathbb{E} S(A)_{\psi} \geq \log \left(d_{A}\right)-\log \left(1+\frac{d_{A}}{d_{B}}\right) \approx \log d_{A} \tag{17.5}
\end{equation*}
$$

That is, a random n-qubit state has k-qubit marginals that look like $I / 2^{k}$ if $k<n / 2$.
How accurate is this bound? Suppose that

$$
\begin{equation*}
|\psi\rangle=\sum_{i j} G_{i j}|i\rangle \otimes|j\rangle \tag{17.6}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbb{E}\left|G_{i j}\right|^{2}=\frac{1}{d_{A} d_{B}} \tag{17.7}
\end{equation*}
$$

Then this has marginals $\psi_{A}=G G^{\dagger}$, corresponding to the complex Wishart distribution.

The histogram of eigenvalues λ of ψ_{A} follows the Marchenko-Pastor laws and satisfies

$$
\begin{align*}
& \lambda_{\min } \approx \frac{1}{d_{A}}\left(1-\sqrt{\frac{d_{A}}{d_{B}}}\right)^{2} \tag{17.8}\\
& \lambda_{\max } \approx \frac{1}{d_{A}}\left(1+\sqrt{\frac{d_{A}}{d_{B}}}\right)^{2} \tag{17.9}\\
& \mu(\lambda)=\frac{\sqrt{\left(\lambda_{\max }-\lambda\right)\left(\lambda-\lambda_{\min }\right)}}{2 \pi\left(d_{A} / d_{B}\right) \lambda} \tag{17.10}
\end{align*}
$$

where $\mu(\lambda)$ is the density. A sketch of the proof goes like the following:

$$
\begin{align*}
\operatorname{tr} \psi_{A}^{k} & =\binom{d_{A}+k-1}{k}^{-1} \operatorname{tr} \Pi_{s y m}\left(C_{A_{1} \ldots A_{k}} \otimes I_{B_{1} \ldots B_{k}}\right) \tag{17.11}\\
& \approx d_{A} \int \mu(\lambda) \lambda^{k} d \lambda \tag{17.12}
\end{align*}
$$

A special case of this is when $d=d_{A}=d_{B}$. Then $\lambda_{\text {min }} \sim 1 / d^{2}, \lambda_{\text {max }} \approx 4 / d$, and

$$
\begin{align*}
\mu(\lambda) & =\frac{\sqrt{4 / d-\lambda}}{2 \pi \sqrt{\lambda}} \tag{17.13}\\
\mu(\sqrt{\lambda}) & =\frac{\sqrt{4 / d-\lambda}}{\pi} \tag{17.14}
\end{align*}
$$

This is known as the quarter-circle law (note that there's a Wigner semicircle law for eigenvalues of $G+G^{\dagger}$, and a circle law for eigenvalues of G).

17.2 Note on Renyi entropies

Suppose we have a state

$$
\begin{equation*}
\rho=\frac{1}{2}|0\rangle\langle 0| \otimes(I / 2)^{\otimes a} \otimes|0\rangle\left\langle\left.\left. 0\right|^{\otimes(b-a)}+\frac{1}{2} \right\rvert\, 1\right\rangle\langle 1| \otimes(I / 2)^{\otimes b} \tag{17.1}
\end{equation*}
$$

for $a<b$. Then

$$
\begin{align*}
S_{0}(\rho) & =\log \left(2^{a}+2^{b}\right) \approx b+2^{a-b} \tag{17.2}\\
S_{\infty}(\rho) & =a+1 \tag{17.3}\\
S(\rho) & =1+\frac{a+b}{2} \tag{17.4}\\
S_{\alpha}(\rho) & =\frac{1}{1-\alpha} \log \left(2^{a}\left(2^{a+1}\right)^{-\alpha}+2^{b}\left(2^{b+1}\right)^{-\alpha}\right) \tag{17.5}\\
& =\frac{1}{1-\alpha}\left[\log \left(\left(2^{1-\alpha}\right)^{a}+\left(2^{1-\alpha}\right)^{b}\right)-\alpha\right] \tag{17.6}
\end{align*}
$$

For $\alpha>1$ the first term dominates, while for $\alpha<1$ the second term dominates. This is why we like taking $\alpha=1$, where the contributions are the same

17.3 k-designs

Say that μ is a distribution on S_{d}, the states in \mathbb{C}^{d}. Then μ is a k-design if

$$
\begin{equation*}
\mathbb{E}_{|\psi\rangle \sim \mu} \psi^{\otimes k}=\mathbb{E}_{\psi \sim \text { Uniform }} \psi^{\otimes k}=\Pi_{\text {sym }}\binom{d+k-1}{k}^{-1} \tag{17.1}
\end{equation*}
$$

Note that we can also define approximate k-designs. 1-designs are pretty easy to come up with, i.e. $\{|000\rangle, \ldots,|111\rangle\}$ is a 1-design. Stabilizer states are 2-designs (and also 3-designs). (Recall that stabilizer states are those that can be written as $C\left|0^{n}\right\rangle$ for C a Clifford state. Alternatively, we can define them as the simultaneous +1 eigenstate of n commuting operators of the form $\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \ldots \otimes \sigma i_{n}$.)

17.3.1 Application: ϵ-randomizing maps

We say that $N: D_{d} \rightarrow D_{d}$ is ϵ-randomizing if $\forall \rho$,

$$
\begin{equation*}
\|N(\rho)-I / d\|_{\infty} \leq \epsilon / d \tag{17.2}
\end{equation*}
$$

We will consider maps of the form

$$
\begin{equation*}
N(\rho)=\frac{1}{n} \sum_{i=1}^{n} U_{i} \rho U_{i}^{\dagger} \tag{17.3}
\end{equation*}
$$

How large does n need to be? (Recall that we can do remote state preparation with cost $\log n$.) Note that

$$
\begin{equation*}
\operatorname{rank} N(|1\rangle\langle 1|) \leq n \tag{17.4}
\end{equation*}
$$

For a choice of $\epsilon<1$,

$$
\begin{align*}
\|N(|1\rangle\langle 1|)-I / d\|_{\infty} & \leq 1 / d \tag{17.6}\\
\Rightarrow \operatorname{rank} N(|1\rangle\langle 1|) & =d \tag{17.7}
\end{align*}
$$

Thus $n \geq d$.
Note that the generalized Paulis work with $n=d^{2}, \epsilon=0$. In fact, $\epsilon=0$ allows for teleportation. To see this, note that $\epsilon=0 \Rightarrow N(\rho)=I / d \Rightarrow N(X)=\operatorname{tr}(X) I / d$ by linearity. Then

$$
\begin{align*}
(I \otimes N)\left(\Phi_{d}\right) & =\frac{1}{d} \sum_{i j}|i\rangle\langle j| \otimes N(|i\rangle\langle j|) \tag{17.8}\\
& =(I / d) \otimes(I / d) \tag{17.9}
\end{align*}
$$

Thus the set of operators

$$
\begin{equation*}
M_{i}=\frac{d^{2}}{n}\left(I \otimes U_{i}\right) \Phi_{d}\left(I \otimes U_{i}^{\dagger}\right) \tag{17.10}
\end{equation*}
$$

is PSD and satisfies $\sum_{i} M_{i}=I$, so it forms a POVM. We can draw the following diagram for a teleportation protocol:

Moving the unitary and transposing, this becomes

Note that this also gives us a lower bound $n \geq d^{2}$ (otherwise we could do teleportation with less than $n<d^{2}$).

If we let $\epsilon>0$, it's possible to have $n=O\left(d / \epsilon^{2}\right)$. Let

$$
\begin{align*}
\alpha & =\max _{\rho}| | N(\rho)-I / d \|_{\infty}=\epsilon / d \tag{17.11}\\
& =\max _{\rho, \sigma}|\operatorname{tr}(N(\rho)-I / d) \sigma| \tag{17.12}\\
& =\max _{|\rho\rangle,|\varphi\rangle}|\operatorname{tr} N(\psi) \varphi-1 / d| \tag{17.13}\\
& =\max _{|\rho\rangle,|\varphi\rangle}\left|\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr}\left[U_{i} \psi U_{i}^{\dagger} \varphi\right]-1 / d\right| \tag{17.14}
\end{align*}
$$

We will later use the fact that

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr}\left[U_{i} A U_{i}^{\dagger} B\right]-1 / d\right| \leq\|A\|_{1}\|B\|_{1}\left(\frac{1}{d}+\alpha\right) \tag{17.15}
\end{equation*}
$$

for A, B Hermitian. Now fix ψ, φ, i, and let

$$
\begin{equation*}
\operatorname{tr} U_{i} \psi U_{i}^{\dagger} \varphi=\left|\gamma_{1}\right|^{2} \tag{17.16}
\end{equation*}
$$

where $U_{i}|\psi\rangle=|\gamma\rangle,|\varphi\rangle=|1\rangle$. Also let $|g\rangle=r|\gamma\rangle$ so that

$$
\begin{align*}
\mathbb{E} \exp \left(\lambda\left|\gamma_{1}\right|^{2}\right) & \leq \mathbb{E} e^{\lambda r^{2}} \mathbb{E} \exp \left(\lambda\left|\gamma_{1}\right|^{2}\right) \tag{17.17}\\
& =\mathbb{E} e^{-\lambda\left|g_{1}\right|^{2}} \tag{17.18}\\
& =\frac{1}{1-\lambda / d} \tag{17.19}\\
\mathbb{E} \exp \left(\lambda \frac{1}{n} \sum_{i} \operatorname{tr}\left[U_{i} \psi U_{i}^{\dagger} \varphi\right]\right) & \leq\left(1-\frac{\lambda}{n d}\right)^{-n} \tag{17.20}
\end{align*}
$$

after some algebra (see quant-ph/0307100 for more details).
Now, for fixed ψ, φ, we have that

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\frac{1}{n} \sum_{i} \operatorname{tr}\left[U_{i} \psi U_{i}^{\dagger} \varphi\right]-\frac{1}{d}\right| \geq \epsilon / d\right] \leq \exp \left(-c n \epsilon^{2}\right) \tag{17.21}
\end{equation*}
$$

We want to be able to make a statement about

$$
\begin{equation*}
\operatorname{Pr}\left[\exists \psi, \varphi\left|\frac{1}{n} \sum_{i} \operatorname{tr}\left[U_{i} \psi U_{i}^{\dagger} \varphi\right]-\frac{1}{d}\right| \geq \epsilon / d\right] \tag{17.22}
\end{equation*}
$$

Normally we would use a union bound, but in this case we need to use a δ-net. Specifically, we say that M is a δ-net if $\forall|x\rangle \in S_{d}, \exists|\beta\rangle \in M$ such that $\||\alpha\rangle-|\beta\rangle \|_{2} \leq \delta$.

We claim that there exists a M of size $|M| \leq(1+(2 / \delta))^{2 d}$. To prove this, we add $\left|\beta_{1}\right\rangle,\left|\beta_{2}\right\rangle, \ldots$. to M until $\|\left|\beta_{i}\right\rangle-\left|\beta_{j}\right\rangle \|_{2}>\delta$ no longer holds. Note that the $B\left(\left|\beta_{i}\right\rangle, \delta / 2\right)$ are all disjoint and are contained in $B(0,1+\delta / 2)$. Letting $\operatorname{Vol}(B(0, r))=C_{d} r^{2 d}$, $|M| C_{d}(\delta / 2)^{2 d} \leq C_{d}(1+\delta / 2)^{2 d} \Rightarrow|M| \leq(1+2 / \delta)^{2 d}$.

Now converting this to the trace norm,

$$
\begin{equation*}
\||\psi\rangle-|\varphi\rangle\left\|_{\ell_{2}} \geq \frac{1}{2}\right\| \psi-\varphi \|_{S_{1}} \tag{17.23}
\end{equation*}
$$

Thus M is a δ-net with $|M| \leq(3 / \delta)^{2 d}$.

Now let

$$
\begin{equation*}
\beta=\max _{\left|\psi_{0}\right\rangle,\left|\varphi_{0}\right\rangle \in M}\left|\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr} U_{i} \psi_{0} U_{i}^{\dagger} \varphi_{0}-\frac{1}{d}\right| \tag{17.24}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{Pr}[\beta \geq \epsilon / d] \leq(3 / \delta)^{4 d} e^{-c n \epsilon^{2}}<1 \tag{17.25}
\end{equation*}
$$

if we choose $\delta=O(1), n=O\left(d / \epsilon^{2}\right)$. Now we just need to extend to points not in the net. Letting

$$
\begin{align*}
& \left\|\psi-\psi_{0}\right\|_{1} \leq 2 \delta \tag{17.26}\\
& \left\|\varphi-\varphi_{0}\right\|_{1} \leq 2 \delta \tag{17.27}
\end{align*}
$$

for some ψ, φ,

$$
\begin{align*}
\alpha & =\left|\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr} U_{i} \psi U_{i}^{\dagger} \varphi-\frac{1}{d}\right| \tag{17.28}\\
& \leq\left|\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr} U_{i} \psi_{0} U_{i}^{\dagger} \varphi_{0}-\frac{1}{d}\right|+\left|\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr} U_{i}\left(\psi-\psi_{0}\right) U_{i}^{\dagger} \varphi_{0}\right|+\left|\frac{1}{n} \sum_{i=1}^{n} \operatorname{tr} U_{i} \psi_{0} U_{i}^{\dagger}\left(\varphi-\varphi_{0}\right)\right| \tag{17.29}\\
& \leq \beta+2 \cdot 2 \delta\left(\frac{1}{d}+\alpha\right) \tag{17.30}\\
\Rightarrow \alpha & \leq \frac{1}{1-4 \delta}\left(\beta+\frac{4 \delta}{d}\right)=O(\epsilon / \delta) \tag{17.31}
\end{align*}
$$

Note that $(I \otimes N) \Phi_{d}$ has rank d / ϵ^{2} but is LOCC-indistinguishable from $I / d \otimes I / d$ with rank d^{2}. Thus it accomplishes data hiding.

