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17.1 Entanglement of random states

Recall that last time we studied entanglement in random states. We showed that for

|ψ〉 ∈ Cda ⊗ Cdb ,

ES(A)ψ ≥ ES2(ψA) (17.1)

≥ − logE trψ2
A (17.2)

where

E trψ2
A =

dA + dB
dAdB + 1

(17.3)

For d = dA = dB, we get

ES(A)ψ ≥ log
d2 + 1

2d
≥ log(d)− 1 (17.4)

For dA << dB, we get

ES(A)ψ ≥ log(dA)− log(1 +
dA
dB

) ≈ log dA (17.5)

That is, a random n-qubit state has k-qubit marginals that look like I/2k if k < n/2.

How accurate is this bound? Suppose that

|ψ〉 =
∑
ij

Gij |i〉 ⊗ |j〉 (17.6)

with

E|Gij|2 =
1

dAdB
(17.7)

Then this has marginals ψA = GG†, corresponding to the complex Wishart distribution.

17-1
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The histogram of eigenvalues λ of ψA follows the Marchenko-Pastor laws and satisfies

λmin ≈
1

dA

(
1−

√
dA
dB

)2

(17.8)

λmax ≈
1

dA

(
1 +

√
dA
dB

)2

(17.9)

µ(λ) =

√
(λmax − λ)(λ− λmin)

2π(dA/dB)λ
(17.10)

where µ(λ) is the density. A sketch of the proof goes like the following:

trψkA =

(
dA + k − 1

k

)−1
trΠsym(CA1....Ak

⊗ IB1....Bk
) (17.11)

≈ dA

∫
µ(λ)λkdλ (17.12)

A special case of this is when d = dA = dB. Then λmin ∼ 1/d2, λmax ≈ 4/d, and

µ(λ) =

√
4/d− λ
2π
√
λ

(17.13)

µ(
√
λ) =

√
4/d− λ
π

(17.14)

This is known as the quarter-circle law (note that there’s a Wigner semicircle law for

eigenvalues of G+G†, and a circle law for eigenvalues of G).

17.2 Note on Renyi entropies

Suppose we have a state

ρ =
1

2
|0〉 〈0| ⊗ (I/2)⊗a ⊗ |0〉 〈0|⊗(b−a) +

1

2
|1〉 〈1| ⊗ (I/2)⊗b (17.1)

for a < b. Then

S0(ρ) = log(2a + 2b) ≈ b+ 2a−b (17.2)

S∞(ρ) = a+ 1 (17.3)

S(ρ) = 1 +
a+ b

2
(17.4)

Sα(ρ) =
1

1− α
log(2a(2a+1)−α + 2b(2b+1)−α) (17.5)

=
1

1− α
[log((21−α)a + (21−α)b)− α] (17.6)

For α > 1 the first term dominates, while for α < 1 the second term dominates. This

is why we like taking α = 1, where the contributions are the same
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17.3 k-designs

Say that µ is a distribution on Sd, the states in Cd. Then µ is a k-design if

E|ψ〉∼µψ⊗k = Eψ∼Uniformψ
⊗k = Πsym

(
d+ k − 1

k

)−1
(17.1)

Note that we can also define approximate k-designs. 1-designs are pretty easy to come

up with, i.e. {|000〉 , ..., |111〉} is a 1-design. Stabilizer states are 2-designs (and also

3-designs). (Recall that stabilizer states are those that can be written as C |0n〉 for C

a Clifford state. Alternatively, we can define them as the simultaneous +1 eigenstate

of n commuting operators of the form σi1 ⊗ σi2 ⊗ ....⊗ σin.)

17.3.1 Application: ε-randomizing maps

We say that N : Dd → Dd is ε-randomizing if ∀ ρ,

||N(ρ)− I/d||∞ ≤ ε/d (17.2)

We will consider maps of the form

N(ρ) =
1

n

n∑
i=1

UiρU
†
i (17.3)

How large does n need to be? (Recall that we can do remote state preparation with

cost log n.) Note that

rankN(|1〉 〈1|) ≤ n (17.4)

(17.5)

For a choice of ε < 1,

||N(|1〉 〈1|)− I/d||∞ ≤ 1/d (17.6)

⇒ rankN(|1〉 〈1|) = d (17.7)

Thus n ≥ d.

Note that the generalized Paulis work with n = d2, ε = 0. In fact, ε = 0 allows for

teleportation. To see this, note that ε = 0 ⇒ N(ρ) = I/d ⇒ N(X) = tr(X)I/d by

linearity. Then

(I ⊗N)(Φd) =
1

d

∑
ij

|i〉 〈j| ⊗N(|i〉 〈j|) (17.8)

= (I/d)⊗ (I/d) (17.9)
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Thus the set of operators

Mi =
d2

n
(I ⊗ Ui)Φd(I ⊗ U †i ) (17.10)

is PSD and satisfies
∑

iMi = I, so it forms a POVM. We can draw the following

diagram for a teleportation protocol:

Moving the unitary and transposing, this becomes

Note that this also gives us a lower bound n ≥ d2 (otherwise we could do teleportation

with less than n < d2).

If we let ε > 0, it’s possible to have n = O(d/ε2). Let

α = max
ρ
||N(ρ)− I/d||∞ = ε/d (17.11)

= max
ρ,σ
|tr(N(ρ)− I/d)σ| (17.12)

= max
|ρ〉,|ϕ〉

|trN(ψ)ϕ− 1/d| (17.13)

= max
|ρ〉,|ϕ〉

∣∣∣∣∣ 1n
n∑
i=1

tr[UiψU
†
i ϕ]− 1/d

∣∣∣∣∣ (17.14)
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We will later use the fact that∣∣∣∣∣ 1n
n∑
i=1

tr[UiAU
†
iB]− 1/d

∣∣∣∣∣ ≤ ||A||1||B||1
(

1

d
+ α

)
(17.15)

for A, B Hermitian. Now fix ψ, ϕ, i, and let

trUiψU
†
i ϕ = |γ1|2 (17.16)

where Ui |ψ〉 = |γ〉, |ϕ〉 = |1〉. Also let |g〉 = r |γ〉 so that

E exp(λ|γ1|2) ≤ Eeλr2E exp(λ|γ1|2) (17.17)

= Ee−λ|g1|2 (17.18)

=
1

1− λ/d
(17.19)

E exp(λ
1

n

∑
i

tr[UiψU
†
i ϕ]) ≤

(
1− λ

nd

)−n
(17.20)

after some algebra (see quant-ph/0307100 for more details).

Now, for fixed ψ, ϕ, we have that

Pr

[∣∣∣∣∣ 1n∑
i

tr[UiψU
†
i ϕ]− 1

d

∣∣∣∣∣ ≥ ε/d

]
≤ exp(−cnε2) (17.21)

We want to be able to make a statement about

Pr

[
∃ψ, ϕ

∣∣∣∣∣ 1n∑
i

tr[UiψU
†
i ϕ]− 1

d

∣∣∣∣∣ ≥ ε/d

]
(17.22)

Normally we would use a union bound, but in this case we need to use a δ-net. Specif-

ically, we say that M is a δ-net if ∀ |x〉 ∈ Sd, ∃ |β〉 ∈M such that || |α〉 − |β〉 ||2 ≤ δ.

We claim that there exists a M of size |M | ≤ (1 + (2/δ))2d. To prove this, we add

|β1〉 , |β2〉 , .... to M until || |βi〉−|βj〉 ||2 > δ no longer holds. Note that the B(|βi〉 , δ/2)

are all disjoint and are contained in B(0, 1 + δ/2). Letting Vol(B(0, r)) = Cdr
2d,

|M |Cd(δ/2)2d ≤ Cd(1 + δ/2)2d ⇒ |M | ≤ (1 + 2/δ)2d.

Now converting this to the trace norm,

|| |ψ〉 − |ϕ〉 ||`2 ≥
1

2
||ψ − ϕ||S1 (17.23)

Thus M is a δ-net with |M | ≤ (3/δ)2d.
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Now let

β = max
|ψ0〉,|ϕ0〉∈M

∣∣∣∣∣ 1n
n∑
i=1

trUiψ0U
†
i ϕ0 −

1

d

∣∣∣∣∣ (17.24)

Note that

Pr[β ≥ ε/d] ≤ (3/δ)4de−cnε
2

< 1 (17.25)

if we choose δ = O(1), n = O(d/ε2). Now we just need to extend to points not in the

net. Letting

||ψ − ψ0||1 ≤ 2δ (17.26)

||ϕ− ϕ0||1 ≤ 2δ (17.27)

for some ψ, ϕ,

α =

∣∣∣∣∣ 1n
n∑
i=1

trUiψU
†
i ϕ−

1

d

∣∣∣∣∣ (17.28)

≤

∣∣∣∣∣ 1n
n∑
i=1

trUiψ0U
†
i ϕ0 −

1

d

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

trUi(ψ − ψ0)U
†
i ϕ0

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

trUiψ0U
†
i (ϕ− ϕ0)

∣∣∣∣∣
(17.29)

≤ β + 2 · 2δ
(

1

d
+ α

)
(17.30)

⇒ α ≤ 1

1− 4δ
(β +

4δ

d
) = O(ε/δ) (17.31)

Note that (I⊗N)Φd has rank d/ε2 but is LOCC-indistinguishable from I/d⊗I/d with

rank d2. Thus it accomplishes data hiding.


