8.S372/18.S996 Quantum Information Science III
 Fall 2020
 Lecture 18: November 3, 2020
 Lecturer: Aram Harrow
 Scribe: Yogeshwar Velingker, Joshua Lin

Recall from last time that

$$
\underset{|v\rangle \in \mathbb{C}^{d}}{\mathbb{E}}|v\rangle\left\langle\left. v\right|^{\otimes n}=\frac{\Pi_{s y m}^{d, n}}{\operatorname{tr} \prod_{s y m}^{d, n}}=\frac{\sum_{\pi \in S_{n}} P_{\pi}}{d(d+1) \cdots(d+n-1)} .\right.
$$

Previously we proved this using direct calculation, but it can be shown in a more illuminating way using representation theory.

18.1 Representation theory

Let G be a group, and V a vector space. Then a map $r: G \rightarrow L(V)$ is a representation if

$$
r(g h)=r(g) r(h)
$$

for all $g, h \in G$.
Examples: $g \in U_{d} \rightarrow g^{\otimes n} \in U\left(\mathbb{C}^{d^{n}}\right)$
$\pi \in S_{n} \rightarrow P_{\pi} \in U\left(\mathbb{C}^{d^{n}}\right)$ (acts by permuting the positions).
Fix $\omega \in \mathbb{C}$ where $|\omega|=1$. Then $z \in \mathbb{Z} \rightarrow \omega^{z} \in U(1)$ is a representation. This also works for any $\omega \in \mathbb{C}$, but we may get a non-unitary representation. Similarly, if $\omega^{p}=1$, then $z \in \mathbb{Z}_{p} \rightarrow \omega^{z} \in U(1)$ is a representation.

Two representations $\left(r_{1}, V_{1}\right)$ and $\left(r_{2}, V_{2}\right)$ are considered equivalent if there exists $T \in L\left(V_{1}, V_{2}\right)$ such that

$$
T r_{1}(g)=r_{2}(g) T
$$

for all $g \in G$. Written as $\left(r_{1}, V_{1}\right) \cong\left(r_{2}, V_{2}\right)$.
Fact: If G is finite or compact then any representation is equivalent to a unitary representation.

A representation (r, V) is reducible if $(r, V) \cong\left(r_{1} \oplus r_{2}, V_{1} \oplus V_{2}\right)$. There is a basis in which for all $g, r(g)$ can be written in block diagonal form $\left(\begin{array}{c|c}r_{1}(g) \mid & 0 \\ \hline 0 & r_{2}(g)\end{array}\right)$. If there is no such decomposition, (r, V) is an irreducible representation, or irrep.

Examples: Trivial representation $r(g)=1 \in U(1)$ for all g.

For a finite group G, let $\mathbb{C}[G]=\operatorname{span}\{|g\rangle: g \in \mathbb{C}\} \cong\{f: G \rightarrow \mathbb{C}\}$. Then we obtain the left/right regular representations: $L(x)|g\rangle=|x g\rangle$ and $R(x)|g\rangle=\left|g x^{-1}\right\rangle$. These representations are reducible, since $\sum_{g \in G}|g\rangle$ is acted on trivially.

In fact, we can decompose $\mathbb{C}[G]$ into irreps. Let \hat{G} be the set of inequivalent irreps $\left(r_{\lambda}, V_{\lambda}\right)$. Then we can write

$$
\mathbb{C}[G] \underset{L\left(g_{1}\right) R\left(g_{2}\right)}{\cong} \bigoplus_{\lambda \in \hat{G}} V_{\lambda} \otimes V_{\lambda}^{*} \cong \bigoplus_{L} \bigoplus_{\lambda \in \hat{G}} V_{\lambda} \otimes \mathbb{C}^{\operatorname{dim} V_{\lambda}}
$$

where the dual representation $\left(r^{*}, V^{*}\right)$ is defined as $r^{*}(g)=r\left(g^{-1}\right)^{T}$ and the left representation and right representation act on different spaces. Note that the dimensions of both sides are equal: $|G|=\sum_{\lambda} d_{\lambda}^{2}$ where d_{λ} is the dimension of V_{λ}.

We can write $L(V, W) \cong V^{*} \otimes W$ since linear maps look like $\sum_{v, w} c_{v, w}|w\rangle\langle v|$. If we have two representations (r, V) and (s, W) we obtain a representation $r\left(g^{-1}\right)^{T} \otimes s(g)=$ $r^{*}(g) \otimes s(g)$ acting on matrices as follows:

$$
M \in L(V, W) \rightarrow s(g) M r(g)^{-1}
$$

since $\operatorname{vec}(A M B)=\left(A \otimes B^{T}\right) \operatorname{vec}(M)$.
Examples: For unitaries $U, r(U)=U \otimes U^{*}$ corresponds to $\rho \rightarrow U \rho U^{\dagger}$. A 1D invariant subspace is spanned by the maximally entangled state $|\Phi\rangle=\sum_{i}|i\rangle \otimes|i\rangle=$ $\operatorname{vec}(I)$. The remaining $\left(d^{2}-1\right)$-dimensional subspace also turns out to be irreducible.
$r(U)=U \otimes U$. This commutes with $F=$ SWAP, so it preserves the $V_{s y m}$ and $V_{\text {anti }}$ subspaces, which have dimensions $d(d \pm 1) / 2$. These subrepresentations are irreducible. For $d=2$, these are known as the triplet and singlet states. In general $(r(U)=$ $\left.U^{\otimes n}, \operatorname{Sym}^{n} \mathbb{C}^{d}\right)$ is an irrep of U_{d}.

Proof sketch: Suppose $\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle \in \operatorname{Sym}^{n} \mathbb{C}^{d}$. There exist $\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle$ such that $\left\langle\left.\psi_{1}\right|^{\otimes n} \mid \psi_{i}\right\rangle \neq 0$. This can be used to show the existence of U such that $\left\langle\psi_{1}\right| r(U)\left|\psi_{2}\right\rangle \neq$ 0 .

Schur's Lemma: If V_{μ}, V_{ν} are irreps of a group G over \mathbb{C}, and then the set of G-invariant maps from $V_{\mu} \rightarrow V_{\nu}$ is

$$
L\left(V_{\mu}, V_{\nu}\right)^{G}= \begin{cases}0, & \mu \neq \nu \\ \mathbb{C} I, & \mu=\nu\end{cases}
$$

This is the set of maps that preserve the group action, i.e. $r_{\nu}(g) T=\operatorname{Tr}_{\mu}(g)$ for all g.
Proof: Suppose $T \in L\left(V_{\mu}, V_{\nu}\right)^{G}$. Then the subspaces ker T and $\operatorname{Im} T$ are G invariant. Since V_{μ} and V_{ν} are irreps, either ker $T=0$ or ker $T=V_{\mu}$, and either $\operatorname{Im} T=0$ or $\operatorname{Im} T=V \nu$. Therefore, if $\mu \neq \nu$ we must have $T=0$. Otherwise, if $\mu=\nu$,
choose eigenvalue λ of T (which exists since it is over \mathbb{C}). Then $\operatorname{ker}(T-\lambda I) \neq 0$, so $\operatorname{ker}(T-\lambda I)=V \mu$ and $T=\lambda I$.

This does not work for irreps over \mathbb{R}. Consider the $S O(2)$ action on \mathbb{R}^{2}, and let $T=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$. This commutes with the group action, but is not a multiple of I.

Before we move on, we will introduce the Haar measure. This is the uniform measure on compact groups, and is the unique measure satisfying

$$
\mu_{\text {Haar }}(S)=\mu_{\text {Haar }}(g S)=\mu_{\text {Haar }}(S g)
$$

If $U \sim$ Haar, then for arbitrary $|v\rangle, U|v\rangle$ is uniformly random.

$$
\underset{U \sim \text { Haar }}{\mathbb{E}} r(U)
$$

is the projector onto U_{d}-invariant vectors.
Calculation:
Let

$$
M=\underset{|\psi\rangle \in \mathbb{C}^{d},\langle\psi \mid \psi=1\rangle}{\mathbb{E}}|\psi\rangle\left\langle\left.\psi\right|^{\otimes n}=\underset{U \sim \text { Haar }}{\mathbb{E}}\left(U|0\rangle\langle 0| U^{\dagger}\right)^{\otimes n}\right)=\mathbb{E} r(U)|0\rangle\left\langle\left. 0\right|^{\otimes n} r(U)^{\dagger} .\right.
$$

Then

$$
\begin{align*}
r(V) M & =\underset{U}{\mathbb{E}} r(V U)|0\rangle\left\langle\left. 0\right|^{\otimes n} r\left(U^{\dagger}\right)\right. \tag{18.1}\\
& =\underset{W=V U}{\mathbb{E}} r(w)|0\rangle\left\langle\left. 0\right|^{\otimes n} r(W \dagger V)\right. \tag{18.2}\\
& =M r(V) \tag{18.3}
\end{align*}
$$

so by Schur's Lemma

$$
M=\lambda I_{\mathrm{Sym}^{n} \mathbb{C}^{d}}=\frac{\Pi_{\mathrm{Smm}}^{d, n}}{\operatorname{tr} \Pi_{\mathrm{Sym}}^{d, n}}
$$

What about $\mathbb{E} U^{\otimes n} M\left(U^{\dagger}\right)^{\otimes n}$ if $M \neq|\psi\rangle\left\langle\left.\psi\right|^{\otimes n}\right.$?
Isotypic decomposition: Compact/finite groups satisfy complete reducibility, which means that every representation can be decomposed into a direct sum of irreps.

$$
\begin{align*}
V & \cong \bigoplus_{\lambda \in \hat{G}} V_{\lambda} \otimes \mathbb{C}^{M_{\lambda}} \tag{18.4}\\
& \cong \bigoplus_{\lambda} V_{\lambda} \otimes L\left(V_{\lambda}, V\right)^{G} \tag{18.5}
\end{align*}
$$

where $M_{\lambda} \geq 0$ is the multiplicity of λ.

18.2 Schur-Weyl duality

Duality between action of the unitary group and the symmetric group.
Let $q_{n}(U)=U^{\otimes n}$ and $p_{d}(\pi)=\sum_{i_{1} \ldots i_{n} \in[d]}\left|i_{1} \ldots i_{n}\right\rangle\left\langle i_{\pi(1)} \ldots i_{\pi(n)}\right|$, where both operators act on $\left(\mathbb{C}^{d}\right)^{\otimes n}$. We have $\left[q_{n}(U), p_{d}(\pi)\right]=0$.

We can write

$$
\left(\mathbb{C}^{d}\right)^{\otimes n} \cong U_{p_{d} q_{n}}^{U_{n}} \bigoplus_{\lambda \in \operatorname{Par}(n, d)} Q_{\lambda} \otimes P_{\lambda}
$$

where Q_{λ} and P_{λ} are U_{d} and S_{n} irreps respectively, labeled by partitions from the set

$$
\operatorname{Par}(n, d)=\left\{\lambda \in \mathbb{Z}^{d}: \lambda_{1} \geq \cdots \geq \lambda_{d} \geq 0, \sum_{i} \lambda_{i}=n\right\} .
$$

Schur-Weyl duality says that the each λ has multiplicity 1.
Follows from the following. Let

$$
A=\operatorname{span}\left\{q_{n}(U): U \in U_{d}\right\}, B=\operatorname{span}\left\{p_{d}(\pi): \pi \in S_{n}\right\}
$$

Then $\operatorname{Comm}(A)=\{X:[X, a]=0 \forall a \in A\}=B$ and $\operatorname{Comm}(B)=A=\operatorname{span}\left\{X^{\otimes n}:\right.$ $\left.X \in M_{d}\right\}$ by the Double Commutant theorem.

Examples:

We can denote a partition by a Young diagram, where we arrange n boxes in rows corresponding to each part. If $n=2$, there are two partitions: $\lambda=(2,0)$ \square and $\lambda=(1,1) \square$ and we have

If $d=2$, then for a partition $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ we obtain a spin- J representation, where $J=\left(\lambda_{1}-\lambda_{2}\right) / 2$.

When $n=3, d=2$ there are two partitions: $P \bar{\square}$ $\operatorname{spin} 3 / 2, \operatorname{dim} 4$ and $\operatorname{dim} P \square=2, Q \square \square=\operatorname{spin} 1 / 2, \operatorname{dim} 2$. The dimensions match up since $2^{3}=1 \cdot 4+2 \cdot 2$.

$$
\# \text { Par } \sim n^{d}, \operatorname{dim} Q_{\lambda} \leq n^{d^{2}}, \operatorname{dim} P_{\lambda} \approx \exp \left(n H\left(\frac{\lambda}{n}\right)\right)
$$

