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Recall from last time that

E
|v〉∈Cd

|v〉 〈v|⊗n =
Πd,n
sym

trΠd,n
sym

=

∑
π∈Sn Pπ

d(d+ 1) · · · (d+ n− 1)
.

Previously we proved this using direct calculation, but it can be shown in a more

illuminating way using representation theory.

18.1 Representation theory

Let G be a group, and V a vector space. Then a map r : G→ L(V ) is a representation

if

r(gh) = r(g)r(h)

for all g, h ∈ G.

Examples: g ∈ Ud → g⊗n ∈ U(Cdn)

π ∈ Sn → Pπ ∈ U(Cdn) (acts by permuting the positions).

Fix ω ∈ C where |ω| = 1. Then z ∈ Z → ωz ∈ U(1) is a representation. This

also works for any ω ∈ C, but we may get a non-unitary representation. Similarly, if

ωp = 1, then z ∈ Zp → ωz ∈ U(1) is a representation.

Two representations (r1, V1) and (r2, V2) are considered equivalent if there exists

T ∈ L(V1, V2) such that

Tr1(g) = r2(g)T

for all g ∈ G. Written as (r1, V1) ∼= (r2, V2).

Fact: If G is finite or compact then any representation is equivalent to a unitary

representation.

A representation (r, V ) is reducible if (r, V ) ∼= (r1⊕ r2, V1⊕ V2). There is a basis in

which for all g, r(g) can be written in block diagonal form

(
r1(g) 0

0 r2(g)

)
. If there is

no such decomposition, (r, V ) is an irreducible representation, or irrep.

Examples: Trivial representation r(g) = 1 ∈ U(1) for all g.
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For a finite group G, let C[G] = span{|g〉 : g ∈ C} ∼= {f : G→ C}. Then we obtain

the left/right regular representations: L(x) |g〉 = |xg〉 and R(x) |g〉 = |gx−1〉. These

representations are reducible, since
∑

g∈G |g〉 is acted on trivially.

In fact, we can decompose C[G] into irreps. Let Ĝ be the set of inequivalent irreps

(rλ, Vλ). Then we can write

C[G] ∼=
L(g1)R(g2)

⊕
λ∈Ĝ

Vλ ⊗ V ∗λ ∼=
L

⊕
λ∈Ĝ

Vλ ⊗ CdimVλ

where the dual representation (r∗, V ∗) is defined as r∗(g) = r(g−1)T and the left rep-

resentation and right representation act on different spaces. Note that the dimensions

of both sides are equal: |G| =
∑

λ d
2
λ where dλ is the dimension of Vλ.

We can write L(V,W ) ∼= V ∗⊗W since linear maps look like
∑

v,w cv,w |w〉 〈v|. If we

have two representations (r, V ) and (s,W ) we obtain a representation r(g−1)T ⊗s(g) =

r∗(g)⊗ s(g) acting on matrices as follows:

M ∈ L(V,W )→ s(g)Mr(g)−1

since vec(AMB) = (A⊗BT )vec(M).

Examples: For unitaries U , r(U) = U ⊗ U∗ corresponds to ρ → UρU †. A 1D

invariant subspace is spanned by the maximally entangled state |Φ〉 =
∑

i |i〉 ⊗ |i〉 =

vec(I). The remaining (d2 − 1)-dimensional subspace also turns out to be irreducible.

r(U) = U ⊗U . This commutes with F = SWAP, so it preserves the Vsym and Vanti
subspaces, which have dimensions d(d±1)/2. These subrepresentations are irreducible.

For d = 2, these are known as the triplet and singlet states. In general (r(U) =

U⊗n, SymnCd) is an irrep of Ud.

Proof sketch: Suppose |ψ1〉 , |ψ2〉 ∈ SymnCd. There exist |φ1〉 , |φ2〉 such that

〈ψ1|⊗n |ψi〉 6= 0. This can be used to show the existence of U such that 〈ψ1| r(U) |ψ2〉 6=
0.

Schur’s Lemma: If Vµ, Vν are irreps of a group G over C, and then the set of

G-invariant maps from Vµ → Vν is

L(Vµ, Vν)
G =

{
0, µ 6= ν

CI, µ = ν

This is the set of maps that preserve the group action, i.e. rν(g)T = Trµ(g) for all g.

Proof: Suppose T ∈ L(Vµ, Vν)
G. Then the subspaces ker T and ImT are G-

invariant. Since Vµ and Vν are irreps, either ker T = 0 or ker T = Vµ, and either

ImT = 0 or ImT = V ν. Therefore, if µ 6= ν we must have T = 0. Otherwise, if µ = ν,
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choose eigenvalue λ of T (which exists since it is over C). Then ker (T − λI) 6= 0, so

ker (T − λI) = V µ and T = λI.

This does not work for irreps over R. Consider the SO(2) action on R2, and let

T =

(
cos θ − sin θ

sin θ cos θ

)
. This commutes with the group action, but is not a multiple of I.

Before we move on, we will introduce the Haar measure. This is the uniform measure

on compact groups, and is the unique measure satisfying

µHaar(S) = µHaar(gS) = µHaar(Sg).

If U ∼ Haar, then for arbitrary |v〉, U |v〉 is uniformly random.

E
U∼Haar

r(U)

is the projector onto Ud-invariant vectors.

Calculation:

Let

M = E
|ψ〉∈Cd,〈ψ|ψ=1〉

|ψ〉 〈ψ|⊗n = E
U∼Haar

(U |0〉 〈0|U †)⊗n) = E r(U) |0〉 〈0|⊗n r(U)†.

Then

r(V )M = E
U
r(V U) |0〉 〈0|⊗n r(U †) (18.1)

= E
W=V U

r(w) |0〉 〈0|⊗n r(W † V ) (18.2)

= Mr(V ), (18.3)

so by Schur’s Lemma

M = λISymnCd =
Πd,n

Sym

trΠd,n
Sym

.

What about EU⊗nM(U †)⊗n if M 6= |ψ〉 〈ψ|⊗n?

Isotypic decomposition: Compact/finite groups satisfy complete reducibility, which

means that every representation can be decomposed into a direct sum of irreps.

V ∼=
⊕
λ∈Ĝ

Vλ ⊗ CMλ (18.4)

∼=
⊕
λ

Vλ ⊗ L(Vλ, V )G (18.5)

where Mλ ≥ 0 is the multiplicity of λ.
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18.2 Schur-Weyl duality

Duality between action of the unitary group and the symmetric group.

Let qn(U) = U⊗n and pd(π) =
∑

i1...in∈[d] |i1 . . . in〉 〈iπ(1) . . . iπ(n)|, where both opera-

tors act on (Cd)⊗n. We have [qn(U), pd(π)] = 0.

We can write

(Cd)⊗n ∼=Ud×Sn
pdqn

⊕
λ∈Par(n,d)

Qλ ⊗ Pλ

where Qλ and Pλ are Ud and Sn irreps respectively, labeled by partitions from the set

Par(n, d) = {λ ∈ Zd : λ1 ≥ · · · ≥ λd ≥ 0,
∑
i

λi = n}.

Schur-Weyl duality says that the each λ has multiplicity 1.

Follows from the following. Let

A = span{qn(U) : U ∈ Ud}, B = span{pd(π) : π ∈ Sn}

Then Comm(A) = {X : [X, a] = 0 ∀a ∈ A} = B and Comm(B) = A = span{X⊗n :

X ∈Md} by the Double Commutant theorem.

Examples:

We can denote a partition by a Young diagram, where we arrange n boxes in rows

corresponding to each part. If n = 2, there are two partitions: λ = (2, 0) and

λ = (1, 1) and we have

P = trivial

Q = symmetric

P = sign

Q = antisymmetric

If d = 2, then for a partition λ = (λ1, λ2) we obtain a spin-J representation, where

J = (λ1 − λ2)/2.
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When n = 3, d = 2 there are two partitions: P = trivial, Q =

spin 3/2, dim 4 and dimP = 2, Q = spin 1/2, dim 2. The dimensions

match up since 23 = 1 · 4 + 2 · 2.

#Par ∼ nd, dimQλ ≤ nd
2
, dimPλ ≈ exp(nH(λ

n
)).


