
8.S372/18.S996 Quantum Information Science III Fall 2020

Lecture 19: November 5, 2020

Lecturer: Aram Harrow Scribe: Shreya Vardhan, Yogeshwar Velingker

19.1 Schur-Weyl Duality

Recall from the previous lecture that (Cd)⊗n can be decomposed into irreps of Ud×Sn
as:

(Cd)⊗n ' ⊕λ∈Par(n,d) Qλ ⊗ Pλ (19.1)

where Par(n, d) is the set of partitions of n into d elements, each Qλ is an irrep of Vd,

and each Pλ is an irrep of Sn.

In particular, for the n = 2 case, we have two possible partitions λ = (2, 0),

represented by , and λ = (1, 1), represented by . Corresponding to these, we get

two terms in (19.1):

(Cd)⊗2 ' Q ⊗ P ⊕ Q ⊗ P (19.2)

where Q is the d(d+ 1)/2-dimensional symmetric representation of Vd, P is the 1-

dimensional trivial representation of S2, Q is the d(d−1)/2-dimensional antisymmetric

representation of Vd, P is the 1-dimensional sign representation of S2.

19.2 Application to merging

Recall from the last lecture that as a consequence of (19.2),

EU (U ⊗ U) X (U ⊗ U)† = projection of X onto (span{Πsym,Πanti} = span{I, F})

=
Tr[XΠsym]

TrΠsym

Πsym +
Tr [XΠanti]

Tr Πanti

Πanti

(19.1)

This tells us that E (U ⊗ U) X (U ⊗ U)† has a simple block-diagonal structure when

written in terms of the symmetric and antisymmetric subspaces, and is proportional

to the identity within each block.

We consider the particular case of X = ψ⊗ψ, and consider the setup for decoupling,

shown in figure 19.1.
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Figure 19.1: Setup for decoupling

Decoupling implies that σA2R ≈ σA2 ⊗ σR. Let us see this by first looking at the

distance in the Schatten 2-norm, which is mathematically easier to work with despite

being less useful operationally:

EU ||σA2R − σA2 ⊗ σR||22
= EU [trσ2

A2R
− 2tr(σA2RσA2 ⊗ σR) + trσ2

A2
trσ2

R]
(19.2)

Let us now compute each of the terms in (19.2). The first term can be evaluated

as follows:
Etrσ2

A2R
= Etr(σA2R ⊗ σA′

2R
′)FA2R

= tr[ψAR ⊗ ψA′R′E(U † ⊗ U †)FA2R(U ⊗ U)]
(19.3)

where for instance A′ refers to a copy of the system A, and FB for any subsystem B

refers to the swap operator on two copies of B. F has a non-trivial evolution only in

A2, so we find

E(U † ⊗ U †)FA2(U ⊗ U) = α+
Π+

Tr[Π+]
+ α−

Π−
Tr[Π−]

, Π± =
I ± F

2
(19.4)

where

α± = tr[Π±F
A2 ] = tr[

I ± FA1FA2

2
FA2 ] = tr

[FA2 ± FA1 ]

2
(19.5)

so that

EUA1A2
(U † ⊗ U †)FA2(U ⊗ U) =

dA1 + dA2

dA + 1
Π+ +

dA1 − dA2

dA − 1
Π−

≡ p Π+ + q Π−

=
p+ q

2
I +

p− q
2

FA

(19.6)

So overall,

E tr[σ2
A2R

] = tr[(ψAR ⊗ ψA′R′)(
p+ q

2
I +

p− q
2

FA)FR

=
p+ q

2
trψ2

R +
p− q

2
trψ2

AR

(19.7)

Note that
p+ q

2
≈ d−1A2

,
p− q

2
≈ d−1A1

(19.8)
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The last term in (19.2) is

E[trσ2
A2

trσ2
R] = E[trσ2

A2
] trψ2

R, (19.9)

where
Etrσ2

A2
= E tr(UA ⊗ UA′)(ψA ⊗ ψA′)(UA ⊗ UA′)†FA2

= tr(ψA ⊗ ψA′)(
p+ q

2
I +

p− q
2

FA)

=
p+ q

2
+
p− q

2
tr(ψ2

A) ≤ p =
dA + dA2

dA1dA2 + 1
≈ 1

dA2

(19.10)

if dA1 > dA2 . This suggests σA2 is close to the maximally mixed state if dA1 > dA2 .

E trσA2R(σA2 ⊗ σR) = E tr(UA ⊗ UA′)(ψAR)(UA ⊗ UA′)†FAR

= tr(ψAR ⊗ ψA′ ⊗ ψR′)(
p+ q

2
I +

p− q
2

FA)FR

=
p+ q

2
trψ2

R +
p− q

2
trψAR(ψA ⊗ ψR)

(19.11)

Putting all the terms together,

E ||σA2R2−σA2⊗σR||22 =
dA1(d

2
A2
− 1)

d2A − 1
(trψ2

AR−2trψAR(ψA⊗ψR)+trψ2
Atrψ2

R) (19.12)

Note that we have made no approximations so far, and this expression is exact. More-

over, we only used the fact that U is a “2-design.”

Let us now see how this can be used to obtain an upper bound on the distance in

the Schatten 1-norm, which is more operationally useful. Note that for a d× d matrix

X,

||X||2 ≤ ||X||1 ≤
√
d ||X||2 (19.13)

The latter inequality can be shown using the Cauchy-Schwarz inequality. Due to the

factor of
√
d, to get a non-trivial bound, we often need ||X||2 to be exponentially small

in the number of degrees of freedom.

Since the unitary operator does not act on R,

σR = ψR (19.14)

As warm-up, let us find an upper bound on the 1-norm distance between σ2 and the
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maximally mixed state τA2 =
IA2

dA2
.

||σA2 − τA2||21 ≤ dA2 E ||σA2 − τA2||2

= dA2 E(trσ2
A2
− 1

dA2

)

= dA2(
p+ q

2
+
p− q

2
trψ2

A)− 1

=
dA2

dA1

trψ2
A

≤ small if dA1 � dA2

(19.15)

Similarly, the trace distance between σA2R and σA2 ⊗ σR is upper-bounded by

E ||σA2R − σA2 ⊗ σR||21 ≤ dA2dR E ||σA2R − σA2 ⊗ σR||22

≤ dA2dR
dA1

(trψ2
AR + trψ2

A trψ2
R)

(19.16)

Let us now try to estimate the sizes of the different terms in (19.16).

Let us now take n copies of our state. Take |ψ〉 to be a typical purification of ρ⊗nAB.

Given a purification |φ〉ABR of ρAB, |ψ〉 is defined as

|ψ〉 = c(Πn
φA,δ
⊗ Πn

φB ,δ
⊗ Πn

φB ,δ
) |φ〉⊗nABR (19.17)

Then
trψ2

A ≈ exp(−nS(A)φ) = exp(−nS(A)ρ)

trψ2
R ≈ exp(−nS(R)φ) = exp(−nS(AB)ρ)

trψ2
AR ≈ exp(−nS(AR)φ) = exp(−nS(B)ρ) ≥ trψ2

A trψ2
R

(19.18)

This means the second term in (19.16) can be ignored. Further, we can estimate

dR ≈ exp(nS(AB)ρ), dA ≈ exp(nS(A)ρ) (19.19)

So (19.16) is small if

dAdR
dA2

1

trψ2
AR � 1⇒ log dA1 �

1

2
log(dAdRtrψ2

AR) ≈ 1

2
nI(A : R) (19.20)

Let us now apply this to merging. The key idea is that due to the decoupling

between A2 and R when A1 consists of 1
2
nI(A : R) qubits, the final state can be

rotated to purify R and A2 separately.

We now have a “fully quantum Slepian wolf” protocol, where 1
2
I(A : R)[q → q] is

used, to produce 1
2
I(A : B)[qq].
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Let us translate the bound obtained above for the trace distance to a bound on

fidelity:
1

2
||σA2R − σA2 ⊗ σR||1 ≤ ε⇒ F (σA2R, σA2 ⊗ σR) ≥ 1− ε (19.21)

We know that σA2R is purified by UA→A1A2 |ψ〉ABR, while σA2 ⊗ σR can be purified by

|Φ〉A2B̃
⊗ |ψ〉BABBR

. By Uhlmann’s theorem, this implies that there exists a unitary

acting on the complement of A2R, VA1B → B̃BABB, that achieves this fidelity.

Implications of this discussion for relations between various protocols and resource

inequalities in quant-ph/0606225:

Let us first try to express the Fully Quantum Slepian Wolf(FQSW)/ merging pro-

tocol as a resource inequality. Suppose we have an isometry W from a source S to AB.

We denote with 〈WS→AB : ψS〉 the ability to produce the state ρAB when the state on

the source if ψS. Then we have

〈WS→AB : ψS〉+
1

2
I(A : R)[q → q] ≥ 〈WS→BABB

: ψS〉+
1

2
I(A : B)[qq] (19.22)

Using teleportation, we can equivalently write

〈WS→AB : ψS〉+ S(A|B)[q → q] + I(A : B)[c→ c] ≥ 〈WS→BABB
: ψS〉 (19.23)

Let us now run this protocol backwards. This gives us the FQRS, or the fully quantum

reverse shannon protocol. While FQSW sends ρAB → ωB′ where B′ = BABB, FQRS

sends ωB′ → ρAB = NB′→AB(ω), whereNB′→AB is a channel from Bob (B′) to Alice(A),

where Alice keeps the environment. This can be seen as a protocol for state splitting,

1

2
I(A : R)[q ← q] +

1

2
I(A : B)[qq] ≥ 〈NB′→AB : ωB〉 (19.24)

Renaming the various parties, this can be written in a more standard form:

1

2
I(A : B)[q → q] +

1

2
I(B : E)[qq] ≥ 〈NA′→BEA

: ωA′〉 (19.25)

Now recall the father protocol

〈NA′→B : ωA′〉+
1

2
I(A : E)[qq] ≥ 1

2
I(A : B)[q → q] (19.26)

What if Alice keeps the environment? Then we have a channel NA′→BEA
. Bob has

purification, so S(E)[qq] can be recovered. Net entanglement is

S(E)− 1

2
I(A : E) =

1

2
I(B : E) (19.27)

〈NA′→BEA
: ωA′〉 =

1

2
I(A : B)[q → q] +

1

2
I(B : E)[qq] (19.28)

Shown in Devetak, quant-ph/0505138.
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19.3 Merging and quantum error correction

Suppose we have a state with a ebits between Alice and Rebecca, and b ebits between

Alice and Bob.

|ψ〉 = |φ〉⊗aA1R
|φ〉⊗bA2B

(19.1)

Merging requires a qubits from A to B, or b qubits from A→ R. Both tasks are quite

trivial, and can be accomplished by simply handing over the right qubits to Bob or

Rebecca.

If instead we use a Haar-random unitary to accomplish this task, then we can use

any a+ δ qubits sent or b+ δ qubits sent to R. But now, the same unitary works for

both receivers, and it does not matter which qubits are sent to B or R.

Conversely if Bob gets a− δ qubits, he is decoupled, or if Rebecca gets b− δ then

she is decoupled, and the merging task cannot be accomplished.

Similar to a quantum error-correcting code.

Applications: Hayden and Preskill, “Black holes as mirrors” 0708.4025. Throw in

one qubit. Can we recover it from the Hawking radiation?


