8.S372/18.S996 Quantum Information Science III
 Fall 2020
 Lecture 19: November 5, 2020
 Lecturer: Aram Harrow
 Scribe: Shreya Vardhan, Yogeshwar Velingker

19.1 Schur-Weyl Duality

Recall from the previous lecture that $\left(\mathbb{C}^{d}\right)^{\otimes n}$ can be decomposed into irreps of $U^{d} \times S_{n}$ as:

$$
\begin{equation*}
\left(\mathbb{C}^{d}\right)^{\otimes n} \simeq \oplus_{\lambda \in \operatorname{Par}(n, d)} Q_{\lambda} \otimes P_{\lambda} \tag{19.1}
\end{equation*}
$$

where $\operatorname{Par}(n, d)$ is the set of partitions of n into d elements, each Q_{λ} is an irrep of V_{d}, and each P_{λ} is an irrep of S_{n}.

In particular, for the $n=2$ case, we have two possible partitions $\lambda=(2,0)$, represented by \square, and $\lambda=(1,1)$, represented by \square. Corresponding to these, we get two terms in (19.1):

$$
\begin{equation*}
\left(\mathbb{C}^{d}\right)^{\otimes 2} \simeq Q_{\square} \otimes P_{\square} \oplus Q_{\square} \otimes P_{\square} \tag{19.2}
\end{equation*}
$$

where Q_{\square} is the $d(d+1) / 2$-dimensional symmetric representation of V_{d}, P_{\square} is the 1 dimensional trivial representation of S_{2}, Q_{\square} is the $d(d-1) / 2$-dimensional antisymmetric representation of V_{d}, P_{\square} is the 1-dimensional sign representation of S_{2}.

19.2 Application to merging

Recall from the last lecture that as a consequence of (19.2),

$$
\begin{gather*}
\mathbb{E}_{U}(U \otimes U) X(U \otimes U)^{\dagger}=\text { projection of X onto }\left(\operatorname{span}\left\{\Pi_{\text {sym }}, \Pi_{\text {anti }}\right\}=\operatorname{span}\{I, F\}\right) \\
=\frac{\operatorname{Tr}\left[X \Pi_{\text {sym }}\right]}{\operatorname{Tr} \Pi_{\text {sym }}} \Pi_{\text {sym }}+\frac{\operatorname{Tr}\left[X \Pi_{\text {anti }}\right]}{\operatorname{Tr} \Pi_{\text {anti }}} \Pi_{\text {anti }} \tag{19.1}
\end{gather*}
$$

This tells us that $\mathbb{E}(U \otimes U) X(U \otimes U)^{\dagger}$ has a simple block-diagonal structure when written in terms of the symmetric and antisymmetric subspaces, and is proportional to the identity within each block.

We consider the particular case of $X=\psi \otimes \psi$, and consider the setup for decoupling, shown in figure 19.1.

Figure 19.1: Setup for decoupling
Decoupling implies that $\sigma^{A_{2} R} \approx \sigma^{A_{2}} \otimes \sigma^{R}$. Let us see this by first looking at the distance in the Schatten 2-norm, which is mathematically easier to work with despite being less useful operationally:

$$
\begin{gather*}
\mathbb{E}_{U}\left\|\sigma_{A_{2} R}-\sigma_{A_{2}} \otimes \sigma_{R}\right\|_{2}^{2} \\
=\mathbb{E}_{U}\left[\operatorname{tr} \sigma_{A_{2} R}^{2}-2 \operatorname{tr}\left(\sigma_{A_{2} R} \sigma_{A_{2}} \otimes \sigma_{R}\right)+\operatorname{tr} \sigma_{A_{2}}^{2} \operatorname{tr} \sigma_{R}^{2}\right] \tag{19.2}
\end{gather*}
$$

Let us now compute each of the terms in (19.2). The first term can be evaluated as follows:

$$
\begin{gather*}
\mathbb{E} \operatorname{tr} \sigma_{A_{2} R}^{2}=\mathbb{E} \operatorname{tr}\left(\sigma_{A_{2} R} \otimes \sigma_{A_{2}^{\prime} R^{\prime}}\right) F^{A_{2} R} \tag{19.3}\\
=\operatorname{tr}\left[\psi_{A R} \otimes \psi_{A^{\prime} R^{\prime}} \mathbb{E}\left(U^{\dagger} \otimes U^{\dagger}\right) F^{A_{2} R}(U \otimes U)\right]
\end{gather*}
$$

where for instance A^{\prime} refers to a copy of the system A, and F_{B} for any subsystem B refers to the swap operator on two copies of $B . F$ has a non-trivial evolution only in A_{2}, so we find

$$
\begin{equation*}
\mathbb{E}\left(U^{\dagger} \otimes U^{\dagger}\right) F^{A_{2}}(U \otimes U)=\alpha_{+} \frac{\Pi_{+}}{\operatorname{Tr}\left[\Pi_{+}\right]}+\alpha_{-} \frac{\Pi_{-}}{\operatorname{Tr}\left[\Pi_{-}\right]}, \quad \Pi_{ \pm}=\frac{I \pm F}{2} \tag{19.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{ \pm}=\operatorname{tr}\left[\Pi_{ \pm} F^{A_{2}}\right]=\operatorname{tr}\left[\frac{I \pm F^{A_{1}} F^{A_{2}}}{2} F^{A_{2}}\right]=\operatorname{tr} \frac{\left[F^{A_{2}} \pm F^{A_{1}}\right]}{2} \tag{19.5}
\end{equation*}
$$

so that

$$
\begin{gather*}
\mathbb{E}_{U_{A_{1} A_{2}}}\left(U^{\dagger} \otimes U^{\dagger}\right) F^{A_{2}}(U \otimes U)=\frac{d_{A_{1}}+d_{A_{2}}}{d_{A}+1} \Pi_{+}+\frac{d_{A_{1}}-d_{A_{2}}}{d_{A}-1} \Pi_{-} \\
\equiv p \Pi_{+}+q \Pi_{-} \tag{19.6}\\
=\frac{p+q}{2} I+\frac{p-q}{2} F^{A}
\end{gather*}
$$

So overall,

$$
\begin{align*}
\mathbb{E} \operatorname{tr}\left[\sigma_{A_{2} R}^{2}\right]= & \operatorname{tr}\left[\left(\psi_{A R} \otimes \psi_{A^{\prime} R^{\prime}}\right)\left(\frac{p+q}{2} I+\frac{p-q}{2} F^{A}\right) F^{R}\right. \\
& =\frac{p+q}{2} \operatorname{tr} \psi_{R}^{2}+\frac{p-q}{2} \operatorname{tr} \psi_{A R}^{2} \tag{19.7}
\end{align*}
$$

Note that

$$
\begin{equation*}
\frac{p+q}{2} \approx d_{A_{2}}^{-1}, \quad \frac{p-q}{2} \approx d_{A_{1}}^{-1} \tag{19.8}
\end{equation*}
$$

The last term in (19.2) is

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{tr} \sigma_{A_{2}}^{2} \operatorname{tr} \sigma_{R}^{2}\right]=\mathbb{E}\left[\operatorname{tr} \sigma_{A_{2}}^{2}\right] \operatorname{tr} \psi_{R}^{2} \tag{19.9}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbb{E} \operatorname{tr} \sigma_{A_{2}}^{2}=\mathbb{E} \operatorname{tr}\left(U_{A} \otimes U_{A^{\prime}}\right)\left(\psi_{A} \otimes \psi_{A^{\prime}}\right)\left(U_{A} \otimes U_{A^{\prime}}\right)^{\dagger} F^{A_{2}} \\
&=\operatorname{tr}\left(\psi_{A} \otimes \psi_{A^{\prime}}\right)\left(\frac{p+q}{2} I+\frac{p-q}{2} F^{A}\right) \tag{19.10}\\
&=\frac{p+q}{2}+\frac{p-q}{2} \operatorname{tr}\left(\psi_{A}^{2}\right) \leq p=\frac{d_{A}+d_{A_{2}}}{d_{A_{1}} d_{A_{2}}+1} \approx \frac{1}{d_{A_{2}}}
\end{align*}
$$

if $d_{A_{1}}>d_{A_{2}}$. This suggests $\sigma_{A_{2}}$ is close to the maximally mixed state if $d_{A_{1}}>d_{A_{2}}$.

$$
\begin{gather*}
\mathbb{E} \operatorname{tr} \sigma_{A_{2} R}\left(\sigma_{A_{2}} \otimes \sigma_{R}\right)=\mathbb{E} \operatorname{tr}\left(U_{A} \otimes U_{A^{\prime}}\right)\left(\psi_{A R}\right)\left(U_{A} \otimes U_{A^{\prime}}\right)^{\dagger} F^{A R} \\
=\operatorname{tr}\left(\psi_{A R} \otimes \psi_{A^{\prime}} \otimes \psi_{R^{\prime}}\right)\left(\frac{p+q}{2} I+\frac{p-q}{2} F^{A}\right) F^{R} \tag{19.11}\\
=\frac{p+q}{2} \operatorname{tr} \psi_{R}^{2}+\frac{p-q}{2} \operatorname{tr} \psi_{A R}\left(\psi_{A} \otimes \psi_{R}\right)
\end{gather*}
$$

Putting all the terms together,

$$
\begin{equation*}
\mathbb{E}\left\|\sigma_{A_{2} R_{2}}-\sigma_{A_{2}} \otimes \sigma_{R}\right\|_{2}^{2}=\frac{d_{A_{1}}\left(d_{A_{2}}^{2}-1\right)}{d_{A}^{2}-1}\left(\operatorname{tr} \psi_{A R}^{2}-2 \operatorname{tr} \psi_{A R}\left(\psi_{A} \otimes \psi_{R}\right)+\operatorname{tr} \psi_{A}^{2} \operatorname{tr} \psi_{R}^{2}\right) \tag{19.12}
\end{equation*}
$$

Note that we have made no approximations so far, and this expression is exact. Moreover, we only used the fact that U is a " 2 -design."

Let us now see how this can be used to obtain an upper bound on the distance in the Schatten 1-norm, which is more operationally useful. Note that for a $d \times d$ matrix X,

$$
\begin{equation*}
\|X\|_{2} \leq\|X\|_{1} \leq \sqrt{d}\|X\|_{2} \tag{19.13}
\end{equation*}
$$

The latter inequality can be shown using the Cauchy-Schwarz inequality. Due to the factor of \sqrt{d}, to get a non-trivial bound, we often need $\|X\|_{2}$ to be exponentially small in the number of degrees of freedom.

Since the unitary operator does not act on R,

$$
\begin{equation*}
\sigma_{R}=\psi_{R} \tag{19.14}
\end{equation*}
$$

As warm-up, let us find an upper bound on the 1-norm distance between σ_{2} and the
maximally mixed state $\tau_{A_{2}}=\frac{I_{A_{2}}}{d_{A_{2}}}$.

$$
\begin{gather*}
\left\|\sigma_{A_{2}}-\tau_{A_{2}}\right\|_{1}^{2} \leq d_{A_{2}} \mathbb{E}\left\|\sigma_{A_{2}}-\tau_{A_{2}}\right\|^{2} \\
=d_{A_{2}} \mathbb{E}\left(\operatorname{tr} \sigma_{A_{2}}^{2}-\frac{1}{d_{A_{2}}}\right) \\
=d_{A_{2}}\left(\frac{p+q}{2}+\frac{p-q}{2} \operatorname{tr} \psi_{A}^{2}\right)-1 \tag{19.15}\\
=\frac{d_{A_{2}}}{d_{A_{1}}} \operatorname{tr} \psi_{A}^{2} \\
\leq \text { small if } d_{A_{1}} \gg d_{A_{2}}
\end{gather*}
$$

Similarly, the trace distance between $\sigma_{A_{2} R}$ and $\sigma_{A_{2}} \otimes \sigma_{R}$ is upper-bounded by

$$
\begin{gather*}
\mathbb{E}\left\|\sigma_{A_{2} R}-\sigma_{A_{2}} \otimes \sigma_{R}\right\|_{1}^{2} \leq d_{A_{2}} d_{R} \mathbb{E}\left\|\sigma_{A_{2} R}-\sigma_{A_{2}} \otimes \sigma_{R}\right\|_{2}^{2} \\
\leq \frac{d_{A_{2}} d_{R}}{d_{A_{1}}}\left(\operatorname{tr} \psi_{A R}^{2}+\operatorname{tr} \psi_{A}^{2} \operatorname{tr} \psi_{R}^{2}\right) \tag{19.16}
\end{gather*}
$$

Let us now try to estimate the sizes of the different terms in (19.16).
Let us now take n copies of our state. Take $|\psi\rangle$ to be a typical purification of $\rho_{A B}^{\otimes n}$. Given a purification $|\phi\rangle_{A B R}$ of $\rho_{A B},|\psi\rangle$ is defined as

$$
\begin{equation*}
|\psi\rangle=c\left(\Pi_{\phi_{A}, \delta}^{n} \otimes \Pi_{\phi_{B}, \delta}^{n} \otimes \Pi_{\phi_{B}, \delta}^{n}\right)|\phi\rangle_{A B R}^{\otimes n} \tag{19.17}
\end{equation*}
$$

Then

$$
\begin{gather*}
\operatorname{tr} \psi_{A}^{2} \approx \exp \left(-n S(A)_{\phi}\right)=\exp \left(-n S(A)_{\rho}\right) \\
\operatorname{tr} \psi_{R}^{2} \approx \exp \left(-n S(R)_{\phi}\right)=\exp \left(-n S(A B)_{\rho}\right) \tag{19.18}\\
\operatorname{tr} \psi_{A R}^{2} \approx \exp \left(-n S(A R)_{\phi}\right)=\exp \left(-n S(B)_{\rho}\right) \geq \operatorname{tr} \psi_{A}^{2} \operatorname{tr} \psi_{R}^{2}
\end{gather*}
$$

This means the second term in (19.16) can be ignored. Further, we can estimate

$$
\begin{equation*}
d_{R} \approx \exp \left(n S(A B)_{\rho}\right), \quad d_{A} \approx \exp \left(n S(A)_{\rho}\right) \tag{19.19}
\end{equation*}
$$

So (19.16) is small if

$$
\begin{equation*}
\frac{d_{A} d_{R}}{d_{A_{1}^{2}}} \operatorname{tr} \psi_{A R}^{2} \ll 1 \Rightarrow \log d_{A_{1}} \gg \frac{1}{2} \log \left(d_{A} d_{R} \operatorname{tr} \psi_{A R}^{2}\right) \approx \frac{1}{2} n I(A: R) \tag{19.20}
\end{equation*}
$$

Let us now apply this to merging. The key idea is that due to the decoupling between A_{2} and R when A_{1} consists of $\frac{1}{2} n I(A: R)$ qubits, the final state can be rotated to purify R and A_{2} separately.

We now have a "fully quantum Slepian wolf" protocol, where $\frac{1}{2} I(A: R)[q \rightarrow q]$ is used, to produce $\frac{1}{2} I(A: B)[q q]$.

Let us translate the bound obtained above for the trace distance to a bound on fidelity:

$$
\begin{equation*}
\frac{1}{2}\left\|\sigma_{A_{2} R}-\sigma_{A_{2}} \otimes \sigma_{R}\right\|_{1} \leq \epsilon \Rightarrow F\left(\sigma_{A_{2} R}, \sigma_{A_{2}} \otimes \sigma_{R}\right) \geq 1-\epsilon \tag{19.21}
\end{equation*}
$$

We know that $\sigma_{A_{2} R}$ is purified by $U_{A \rightarrow A_{1} A_{2}}|\psi\rangle_{A B R}$, while $\sigma_{A_{2}} \otimes \sigma_{R}$ can be purified by $|\Phi\rangle_{A_{2} \tilde{B}} \otimes|\psi\rangle_{B_{A} B_{B} R}$. By Uhlmann's theorem, this implies that there exists a unitary acting on the complement of $A_{2} R, V_{A_{1}} B \rightarrow \tilde{B} B_{A} B_{B}$, that achieves this fidelity.

Implications of this discussion for relations between various protocols and resource inequalities in quant-ph/0606225:

Let us first try to express the Fully Quantum Slepian Wolf(FQSW)/ merging protocol as a resource inequality. Suppose we have an isometry W from a source S to $A B$. We denote with $\left\langle W_{S \rightarrow A B}: \psi_{S}\right\rangle$ the ability to produce the state $\rho_{A B}$ when the state on the source if ψ_{S}. Then we have

$$
\begin{equation*}
\left\langle W_{S \rightarrow A B}: \psi_{S}\right\rangle+\frac{1}{2} I(A: R)[q \rightarrow q] \geq\left\langle W_{S \rightarrow B_{A} B_{B}}: \psi_{S}\right\rangle+\frac{1}{2} I(A: B)[q q] \tag{19.22}
\end{equation*}
$$

Using teleportation, we can equivalently write

$$
\begin{equation*}
\left\langle W_{S \rightarrow A B}: \psi_{S}\right\rangle+S(A \mid B)[q \rightarrow q]+I(A: B)[c \rightarrow c] \geq\left\langle W_{S \rightarrow B_{A} B_{B}}: \psi_{S}\right\rangle \tag{19.23}
\end{equation*}
$$

Let us now run this protocol backwards. This gives us the FQRS, or the fully quantum reverse shannon protocol. While FQSW sends $\rho_{A B} \rightarrow \omega_{B^{\prime}}$ where $B^{\prime}=B_{A} B_{B}$, FQRS sends $\omega_{B^{\prime}} \rightarrow \rho_{A B}=\mathcal{N}_{B^{\prime} \rightarrow A B}(\omega)$, where $\mathcal{N}_{B^{\prime} \rightarrow A B}$ is a channel from Bob $\left(B^{\prime}\right)$ to Alice (A), where Alice keeps the environment. This can be seen as a protocol for state splitting,

$$
\begin{equation*}
\frac{1}{2} I(A: R)[q \leftarrow q]+\frac{1}{2} I(A: B)[q q] \geq\left\langle N_{B^{\prime} \rightarrow A B}: \omega_{B}\right\rangle \tag{19.24}
\end{equation*}
$$

Renaming the various parties, this can be written in a more standard form:

$$
\begin{equation*}
\frac{1}{2} I(A: B)[q \rightarrow q]+\frac{1}{2} I(B: E)[q q] \geq\left\langle N_{A^{\prime} \rightarrow B E_{A}}: \omega_{A^{\prime}}\right\rangle \tag{19.25}
\end{equation*}
$$

Now recall the father protocol

$$
\begin{equation*}
\left\langle\mathcal{N}_{A^{\prime} \rightarrow B}: \omega_{A^{\prime}}\right\rangle+\frac{1}{2} I(A: E)[q q] \geq \frac{1}{2} I(A: B)[q \rightarrow q] \tag{19.26}
\end{equation*}
$$

What if Alice keeps the environment? Then we have a channel $\mathcal{N}_{A^{\prime} \rightarrow B E_{A}}$. Bob has purification, so $S(E)[q q]$ can be recovered. Net entanglement is

$$
\begin{gather*}
S(E)-\frac{1}{2} I(A: E)=\frac{1}{2} I(B: E) \tag{19.27}\\
\left\langle N_{A^{\prime} \rightarrow B E_{A}}: \omega_{A^{\prime}}\right\rangle=\frac{1}{2} I(A: B)[q \rightarrow q]+\frac{1}{2} I(B: E)[q q] \tag{19.28}
\end{gather*}
$$

Shown in Devetak, quant-ph/0505138.

19.3 Merging and quantum error correction

Suppose we have a state with a ebits between Alice and Rebecca, and b ebits between Alice and Bob.

$$
\begin{equation*}
|\psi\rangle=|\phi\rangle_{A_{1} R}^{\otimes a}|\phi\rangle_{A_{2} B}^{\otimes b} \tag{19.1}
\end{equation*}
$$

Merging requires a qubits from A to B, or b qubits from $A \rightarrow R$. Both tasks are quite trivial, and can be accomplished by simply handing over the right qubits to Bob or Rebecca.

If instead we use a Haar-random unitary to accomplish this task, then we can use any $a+\delta$ qubits sent or $b+\delta$ qubits sent to R. But now, the same unitary works for both receivers, and it does not matter which qubits are sent to B or R.

Conversely if Bob gets $a-\delta$ qubits, he is decoupled, or if Rebecca gets $b-\delta$ then she is decoupled, and the merging task cannot be accomplished.

Similar to a quantum error-correcting code.
Applications: Hayden and Preskill, "Black holes as mirrors" 0708.4025. Throw in one qubit. Can we recover it from the Hawking radiation?

