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In this lecture, we complete the discussion on merging and re-visit k-designs.

20.1 Black holes as mirrors

Black holes can be formed in general relativity from the gravitational collapse of a star

in a pure state. Once the black hole is formed, it behaves in many respects like a

thermal state: it emits radiation at a certain temperature, and can be associated with

a thermodynamic entropy. However, the evolution from a pure state to a mixed state

would violate the unitarity of quantum mechanics.

To see the same problem from another perspective, consider the following setup:

Alice throws a diary into the black hole. Where does the information in the diary go?

There are a few different options, but each of these presents some problems:

• The information is destroyed. This violates the unitarity of quantum mechanics.

• The information escapes gradually through the Hawking radiation. This violates

the prediction from classical general relativity that nothing can escape from be-

hind the horizon. Recently, a further problem with this option, known as the

“firewall paradox”, has also been discussed (see 1207.3123). This involves certain

implications of monogamy of entanglement.

• The information escapes at the end. This violates the Bekenstein bound, which

is a bound on the amount of entropy that can be contained within a given spatial

region, as it implies that towards the end of the evaporation process, a very small

region would have a very large entropy.

• There is a Planck-size black hole remnant left over at the end of the evaporation

process. This violates the Bekenstein bound and destabilizes low-energy physics.

• A large black hole remnant is left over. This would imply that Hawking radiation

stops being emitted at a relatively early time, which contradicts fairly reliable

predictions of semiclassical gravity.
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The difficulty of accepting any of these options lies at the heart of the conflict between

general relativity and quantum mechanics.

It turns out (Hayden and Preskill, 0708.4025) that information discarded in an

old black hole can be quickly recovered, given that we possess the Hawking radiation

previously emitted from the black hole. This is a consequence of merging.

We can think of the black hole’s time evolution as a unitary black box.

If the black hole starts off as a pure state, then the combined state |ψ(t)〉BR will

be pure at all times t, if we assume the dynamics is unitary. Assuming that the time

evolution operator U(t) is Haar-random, the entropy of the black hole and the radiation

are equal to S(B)ψ(t) = S(R)ψ(t) = min(|B|, |R|).

This gives rise to the Page curve (1301.4995): the entropy of the black hole increases

until the Page time, after which its entropy decreases to zero.2

Now we consider the process of discarding information from Alice into an old black

hole. To keep track of the information in Alice’s qubits, we maintain a reference system

that is (maximally) entangled to Alice’s information.

Let the initial and final states be ρ and σ respectively. We now consider the state

σNB′ that is shared by the black hole and the reference state. We expect this to be

close to the maximally mixed state τN ⊗ τB′ . In fact, using the decoupling inequality

from last lecture,

E‖σNB′ − τN ⊗ τB′‖21 ≤
dBdB
d2R

trρ2NB =
d2N
d2R
.

This distance is independent of the black hole dimension dB.

In the above calculation, we use the fact that the black hole is old in the equation

trρ2NB = dN/dB, because ρNB would then be maximally-mixed.

Applying Uhlmann’s theorem allows us to perform merging: we can reconstruct

Alice’s entanglement with the reference system using the radiation in RE.

2Aside: an article about black hole entropies was recently published in Quanta.

https://www.quantamagazine.org/the-black-hole-information-paradox-comes-to-an-end-20201029/
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20.2 Quantum capacity theorem (by merging)

Merging also gives a direct argument for the quantum capacity theorem (quant-ph/0702005).

As before, given a channel N : A′ → B, let its Stinespring dilation be VN : A′ →
BE. The coherent information is then Ic(φA′ , N) = S(B)V (φ) − S(E)V (φ).

Let |γ〉ABE = (IA⊗ VA′→BE) |φ〉AA′ . With n copies of |γ〉, let ΠAn→S be a projector

onto a “typical subspace” S. In particular, we choose the projector Π such that the

projection onto the subsystem S is maximally mixed. In other words, if |Ψ〉SBnEn =

(ΠAn→S ⊗ IBnEn) |γ〉⊗n up to normalization, then ΨS = IS/dS. The state Ψ would be

close to the actual typical projection Ψ̃ in the subsytem E.

Then rankΨ̃En ≤ 2n(S(E)φ+δ) and trΨ̃2
Bn ≤ 2−n(S(B)φ−δ).

Note that we can also write |Ψ〉SBnEn = (IS⊗V ⊗n) |Φ〉SS′ , where Φ is the maximally-

entangled state.

Like in Shannon’s noisy coding theorem, we choose a random codespace R using a

fixed projector PS→R and a Haar-random unitary US→S, and conjugating PS→R with

US→S. Then, the encoded state is

|ψ〉RBnEn =

√
|S|
|R|

(PU ⊗ IBnEn) |Ψ〉SBnEn

= (IR ⊗ V ⊗nU>) |Φ〉RR′ .
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Here,

E‖ψ̃REn − ψ̃R ⊗ ψ̃En‖21 ≤ dR(rankψ̃En)(trψ2
SEn) = dR2−n(S(B)φ−S(E)φ−2δ).

If dR ≤ 2n(Ic(φ,N)−3δ), the above distance is bounded above by 2−nδ. Hence, for suf-

ficiently small δ > 0, the R and En subsystems are decoupled on average. We can

strengthen this to worst-case decoupling by further restricting the codespace, allowing

Bob to reconstruct Alice’s state by merging.

20.3 Unitary k-designs

Let the matrix of all expected monomials M(U) = Ua1b1 . . . UakbkU
∗
c1d1

. . . U∗ckdk under a

distribution of unitaries µ be

Gk
µ = EU∼µ[(U ⊗ U∗)⊗k]

= proj span {(I⊗k ⊗ pd(π)) |Φd〉⊗k : π ∈ Sk},

where Sk is the set of permutations between k qudits, pd(π) is the qudit permutation

operator and Φd is the maximally-entangled state.

We say that a distribution µ on U(d) is a k-design if

Gk
µ = Gk

Haar.

Equivalently, for all matrices ρ,

EU∼µ[U⊗kρ(U †)⊗k] = EU∼HaarU
⊗kρ(U †)⊗k.

1-designs satisfy E[UρU †] = I/d. We saw previously that the uniform distribution

over the d2 Pauli matrices form a 1-design. Moreover, the uniform distribution over

a set of O(d/ε2) random unitaries is an ε-approximate 1-design. Drawing a random

unitary or Pauli matrix is cheaper than drawing a random unitary from the ε-net for

U(d), which has (1/ε)d
2

elements.

However, 1-designs are not enough for merging. For example, applying a random

Pauli does not generate entanglement in an intially unentangled state, whereas applying

a Haar-random unitary does.

It turns out that 2-designs are sufficient for most applications, including merging.

An example of a 2-design is the uniform distribution over the set of Clifford operations.

To show that the Cliffords form a 2-design, first note that we can decompose all

matrices into sums of Pauli matrices. Therefore, it suffices to consider the action of

the Cliffords on the Paulis.
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Next, let C be a random Clifford on n qubits, and let p ∈ {0, 1, 2, 3}n. Defining

σq = σq1 ⊗ . . .⊗ σqn ,

CσpC
† =

{
I if p = 0n,

σq for random q 6= 0n if p 6= 0n.

Therefore,

E[(CσpC
†)⊗ (CσqC

†)] =


I if p = q = 0n,

1
4n−1

∑
r 6=0n σr ⊗ σr if p = q 6= 0n,

0 if p 6= q.

Note that
∑

r σr ⊗ σr = 2nSWAP (where the sum includes r = 0). Therefore,

E[(CσpC
†)⊗ (CσqC

†)] ∈ span {I, SWAP}.

This implies that the uniform distribution over the Clifford group is a 2-design, since

SWAP commutes with U ⊗ U .

In fact, the uniform distribution over the Cliffords is also a 3-design, but not gen-

erally a 4-design.

It is more expensive to draw a uniform sample from the Clifford group than the

Pauli group, as the Clifford group has size 2n
2
. However, it is still cheaper than drawing

from an ε-net of U(d).

It turns out that we can generate approximate k-designs for any k using a sufficiently

large set of random unitaries. We find the number of unitaries needed using the matrix

Chernoff bound, which states that

P

(
‖ 1

n

n∑
i=1

Xi‖∞ ≥ δ

)
≤ 2de−nδ

2

,

where X1, . . . , Xn are iid d× d matrices with mean zero and E‖Xi‖∞ ≤ 1.

If µ is the uniform distribution over m random unitaries {U1, . . . Um}, it is conve-

nient to define

Xi = (Ui ⊗ U∗i )⊗k −Gk
Haar.

Then Gk
µ −Gk

Haar = (1/m)
∑m

i=1Xi. Therefore,

‖Gk
µ −Gk

Haar‖∞ ≤ δ if m = O(k(log d)/δ2)

⇒ ‖Gk
µ −Gk

Haar‖1 ≤ δ if m = O(d2kk(log d)/δ2).
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We can get a lower bound on the rank n of E[U⊗k |0〉 〈0|⊗k (U †)⊗k] ≈ Πsym/trΠsym

for any approximate k-design over U :

n ≥ trΠsym =

(
d+ k − 1

k

)
= O(dk).


