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22.1 Clarifications in previous proof

An important identity that we made use of is

Tr(cycle) =
∑

i1.i2,··· ,in

Tr (|i1, i2, · · · , in〉〈i2, i3, · · · , in, i1|) = d

The notation dist(σ, τ) means the number of transpositions required to get from σ to

τ . The identity dist(σ, τ) = n−# cycles(σ−1τ) follows from this definition.

Finally, as a remark, the matrix K†K is often called the Gram matrix.

22.2 n = 2 case

Let us construct the Gram matrix when n = 2 which is Gσ,τ = 〈Φσ|Φτ 〉. This matrix

looks like

G =

[
1 1/d

1/d 1

]
=

(
1 +

1

d

)
|+〉〈+|+

(
1− 1

d

)
|−〉〈−|.

The Weingarten function is the inverse of this matrix, or

Wg =
d2

d2 − 1

[
1 −1/d

−1/d 1

]
=

d

d+ 1
|+〉〈+|+ d

d− 1
|−〉〈−|.

Because the off-diagonal elements are negative, we encounter a sign problem, which we

need to resolve in order to write a random circuit in terms of the partition function of

a statistical mechanical model.

To see how to correct the sign problem, consider the example circuit shown in the

handwritten figure below

We may write the expression

E(U ⊗ U∗)⊗2 =
∑
•∈{I,F}
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using the diagrammatic approach introduced in the last lecture. Now, we perform a

step called decimation, whereby we sum over the red dots only. Remarkably, this allows

us to get rid of the sign problem.

∑
•,•∈{I,F}

=
∑
•∈{I,F}

.

In this new notation, we have defined

∑
τ

=
∑
τ

Wgτ,π1(d
2)Gτ,π2(d)Gτ,π3(d) = .

We can split the evaluation up into several cases, corresponding to whether the per-

mutations πi are I or F . Let us denote the weight of the triangle diagram D~π, where

~π is a vector of the three permutations. Then, we have:

(π1, π2, π3) ∈ {(I, I, I), (F, F, F )} → D~π =
d4

d4 − 1

(
1− 1

d2
· 1

d
· 1

d

)
= 1,

as well as

(π1, π2, π3) ∈ {(I, F, F ), (F, I, I)} → D~π =
d4

d4 − 1

(
1

d2
− 1

d
· 1

d

)
= 0.

and

(π1, π2, π3) ∈ {(I, I, F ), (I, F, I), (F, F, I), (F, I, F )} → D~π =
d4

d4 − 1

(
1

d
− 1

d3
· 1

d

)
∼ 1

d
.

Notice that all of these weights are positive. Therefore, it suffices to write the random

circuit amplitude as a sum over all possible assignments of permutations on the black

dots with the weight of a particular assignment being the product of the corresponding

weights of all of the triangles. This can be written as the partition function of some

effective spin model.
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22.3 Estimating entanglement

As an application, we can use these mappings as a tool for understanding entanglement

across a cut in a random unitary circuit. Consider the following circuit above and its

dual mapping; the regions A and B are subsystems of the output density matrix.

We are interested in computing the quantity

Z = E[Tr(ρ2B)],

which is exactly equal to the types of expectation values we were considering. To

understand how to calculate this using the statistical mechanical model formalism, we

first note that in the triangle diagrams, if the two of the π’s on the right side of the

triangle are the same, then the π on the left corner must be equal to the π’s on the right.

If the two π’s disagree, then the π on the left can take either of the two values with

weight ∼ 1/d. The latter case corresponds to the weight of creating a single domain

wall within the triangle (here, a domain wail refers to a cut for which permutations are

given different assignments on either side of the cut).

Thus, since the nodes on the right end are forced to be I in region A and F in

region B, the dominant assignment of permutations to the internal nodes (i.e. the

saddle point value of the partition function) occurs when one draws a domain wall that

cuts the circuit into a red and blue region.

There are two limits of interest. Call the depth of the circuit t. When t < n,

then the domain wall does not form completely and so the dominant configuration

corresponds to the domain wall cutting across from the left to the right side of the

circuit. The weight of this configuration scales like (1/d)t, so

Z = E[Tr(ρ2A)] = E
[
2−S2(ρA)

]
≈ exp

(
t log

d2 + 1

2d

)
,

which is sensible because the circuit has not fully entangled the initial density matrix,

so by increasing the depth by one unit, the entropy should increase by roughly log d.

When t > n, then the circuit is fully scrambled and the domain wall will stretch
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from the upper/lower ends of the circuit to the right side. In this case Z ≈ d−n/2

or S2 = n
2

log d which implies that the entanglement has saturated. These cases are

visually depicted in the figure above.

See section IV.A of 1804.09737 (originally 1608.06950) for more information.

Recent work in this area includes the following:

• Unitary + measurement circuits: Here, one alternates between applying columns

of random unitaries in a brickwork architecture with random measurements in-

serted between adjacent columns. Here, a phase transition from a volume law

(maximally entangled) phase to an area law (product state) phase is found as a

function of the rate of measurement

• Random tensors and random unitary circuits are candidates for establishing quan-

tum supremacy

• Computing Sk for k ≥ 2 and analytic continuation to k = 1 using the replica

trick

22.4 Monogamy of entanglement

A simple definition of monogamy of entanglement is that if Alice and Bob are maximally

correlated, then neither of them can be correlated with a third party. We will better

try to understand this concept through two methods:

• Using symmetry (de Finetti theorems)

• Using information theory (approximate Markov states)
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A motivating example is mean field theory. We start out with the Hamiltonian

H =
∑
i∼j

hij

where h are local Hamiltonians and i ∼ j means that i and j are neighbors. We will

next make a mean field approximation where we assume that the Hamiltonian is close

enough to one in which each particle interacts evenly among all other neighbors:

H ≈ HMF =
D

n

∑
1≤i<j≤n

hij

where D is the number of neighbors. For example, if hij = Fij, then the ground state

is the singlet state |01〉−|10〉√
2

. If n = 3, we call the system frustrated because we cannot

have all pairs of particles forming singlets with each other.

We claim that the ground state of HMF look like ρ⊗n.

To see this, we note that [HMF , Pd(π)] = 0 for all π ∈ Sn, since the mean field

Hamiltonian is invariant under swapping the particles. Therefore, we may write

Tr(HMFψgs) = Tr

(
HMF

1

n!

∑
π∈Sn

Pd(π)ψgsPd(π)†

)
.

Now define

ω =
1

n!

∑
π∈Sn

Pd(π)ψgsPd(π)†.

Thus, [ω, Pd(π)] = 0 and thus we can choose the ground state to be symmetric WLOG.

This does not prove that it must be a tensor power state, and we will finish the proof

next time.

Why not use the pure state

|ψ〉 ∝
∑
π∈Sn

Pd(π)|ψgs〉,

which is also a valid eigenstate that is symmetric? The problem is that this can be

zero, so it is safer to use density matrices over quantum states.

The de Finetti theorem states that

ωij =

∫
dµ(ρ) ρ⊗2.

Why do we need a mixture (the integral)? An example would be the cat state (|0〉⊗n+

|1〉⊗n)/
√

2, which is not close to a product state and can only be expressed as a mixture.
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The original classical version of de Finetti’s theorem was proved in 1931 by Bruno de

Finetti. It states that suppose p is an infinitely exchangeable probability distribution,

or

p(x1, x2, · · · ) = p(xπ(1), xπ(2), · · · )∀π.

Then ∃µ such that ∀k

p(x1, x2, · · · , xk) =

∫
dµ(q) q(x1) · · · q(xk),

or equivalently p1...k =
∫
dµ(q) q⊗k. So naively, permutation invariance is not the

same as independence, because we can allow for mixtures of IID distributions and still

preserve permutation invariance. In 1980, Diaconis and Freedman made this result

more quantitative. In particular, they found that if

p(x1, · · · , xn) = p(xπ(1), · · · , xπ(n))∀n,

then
1

2
||p1...k −

∫
dµ(q) q⊗k ||1 ≤ min

(
k(k − 1)

2n
,
k|x|
n

)
.

In 2002, Caves Fuchs, and Schack derived a quantum version of de Finetti’s theorem.

We will follow the treatment in Chiribella (2010), 1010.1875.

We first purify ρA1,...,An → |ψ〉A1,B1,...,An,Bn ∈ SymnCd2 . Thus, it suffices to prove

the de Finetti theorem for pure states.


