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23.1 de Finetti Thm for Pure Symmetric States

Let |ψ〉 be a state in the symmetric subspace of n+ k systems in d dimensions.

|ψ〉 ∈ Symn+kCd

We will show that

F (trn(ψ),

∫
dµ(φ)φ⊗k)2k ≥ 1− kd

n

23.1.1 Tomography

We will first take a detour and talk briefly about tomography, which describes which

measurements to make to estimate a state. Specifically we can ask the question, given

|φ〉⊗n how well can we estimate |φ〉? We will measure with a continuously indexed set

of POVM: {Mφ̂}φ̂ such that the following holds:∫
dφ̂Mφ̂ = Πsym

Unlike the usual case where we need the measurements to sum to the identity, since

|φ〉⊗n lies in the symmetric subspace, we only need the measurement operators to sum

to the projector onto this subspace. It turns out that the optimal set of measurements

is given by

Mφ̂ = cφ̂⊗n

Where we can calculate the constant c by calculating∫
dφ̂φ̂⊗n =

Πsym

tr(Πsym)
=

Πsym(
d+n−1
n

)
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This gives us

c =

(
d+ n− 1

n

)
We can now return to the proof of the de Finetti Theorem. Recall that the squared

fidelity for pure states is given by

F (φ, φ̂) = trφφ̂

Therefore we can calculate the expectation of the squared fidelity as

EF (φ, φ̂)2 =

∫
dφ̂ tr(φφ̂) tr(Mφ̂φ

⊗n)

=

∫
dφ̂ tr(φφ̂)

(
d+ n− 1

n

)
tr(φφ̂)n

=

(
d+ n− 1

n

)∫
dφ̂ tr(φφ̂)n+1

=

(
d+ n− 1

n

)
tr(φ⊗n+1

∫
dφ̂ φ̂⊗n+1)

=

(
d+ n− 1

n

)
tr(φ⊗n+1 Πsym(

d+n
n+1

))

=

(
d+n−1
n

)(
d+n
n+1

) tr(φ⊗n+1Πsym)

=

(
d+n−1
n

)(
d+n
n+1

) tr(φ⊗n+1)

=

(
d+n−1
n

)(
d+n
n+1

)
=
n+ 1

n+ d

≥ 1− d

n

We can also calculate higher moments of the fidelity as well, in which case we find

EF (φ, φ̂)2k =

(
d+n−1
n

)(
d+n−1+k
n+k

) =
(n+ 1) . . . (n+ k)

(n+ d) . . . (n+ d+ k − 1)
≥ 1− dk

n
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23.1.2 de Finetti Theorem Proof

Let |ψ〉 be given by

|ψ〉 =

∫
aφ |φ〉⊗n+k dφ

If we then trace over n of the qudits we get

trn(ψ) =

∫
dφ(Mφ ⊗ I⊗k)ψ =

∫
dφ pφψφ

We would like to claim that ψφ ≈ φ⊗k.

Calculating the fidelity we get

F (trn(ψ),

∫
dφ pφφ

⊗k)2 ≥
∫
dφ pφF (ψφ, φ

⊗k)2

=

∫
dφ tr(pφψφφ

⊗k)

=

∫
dφ tr((Mφ ⊗ φk)ψ)

= tr(

∫
dφ

(
d+ n− 1

n

)
φ⊗n+kψ)

=

(
d+n−1
n

)(
d+n−1+k
n+k

)
=

(n+ 1) . . . (n+ k)

(n+ d) . . . (n+ d+ k − 1)

≥ 1− dk

n

As a corollary to this we have that for non pure states: If ρ ∈ Ddn+k and [ρ, pd(π)] =

0∀π then

F (trn(ρ),

∫
dµ(σ)σ⊗k)2 ≥ 1− d2k

n

23.1.3 Examples of de Finetti Theorem

Below are some examples to illustrate the theorem.
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23.1.3.1 Example 1

Let |ψ〉 = (|0〉⊗n + |1〉⊗n)/
√

2. Then we have that for k ≥ 1

trn−kψ =
|0〉 〈0|⊗k + |1〉 〈1|⊗k

2

So we can start with a state that looks nothing like a product state and after just

tracing out one system we end with a state that is exactly the state described by the

de Finetti theorem.

23.1.3.2 Example 2

Let ρ =
(
n
n/2

)−1 ∑
x∈{0,1}n,|x|=n/2

|x〉 〈x| := W n
n/2, which is far from any σ⊗n. Then we have

that

trn−kρ =
k∑
j=0

(
n/2
j

)(
n/2
k−j

)(
n
n/2

) W k
j ≈ 2−k

(
k

j

)
W k
j

23.1.3.3 Example 3

This example shows why it is important that n must be bigger than d. We have that

|φ〉 = n
∑
π∈Sn

sgn(π) |π(1), . . . , π(n)〉 ∈ Cn⊗n.

trn−2φ =

(
n

2

)
Πanti

This state is very far from separable states even though k = 2.

23.2 Applications

23.2.1 Mean-Field Theory

Let the Hamiltonian acting on our set of qudits be given by

H =

(
n

k

) ∑
i1<i2<···<ik

hi1,...,ik
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If we then look at the trace of the Hamiltonian applied to the ground state we get

tr(Hψgs) = tr(Hρ)

= tr(h⊗ I⊗n−k)ρ

≥ tr(h

∫
dµ(σ)σ⊗k)− ‖h‖∞

d2k

n− k

≥ min
σ

tr(hσ⊗k)− ‖h‖∞
d2k

n− k

At the same time we have that because ψgs is the ground state we know

tr(Hψgs) ≤ min
σ

tr(hσ⊗k) = min
σ

tr(Hσ⊗n)

23.2.2 Security of QKD

In QKD, Alice sends Ha1 |r1〉 ⊗ Ha2 |r2〉 ⊗ · · · ⊗ Han |rn〉 for a, r ∈ {0, 1}n uniformly

random binary strings. Bob then applies Hb1 ⊗Hb2 ⊗ · · · ⊗Hbn for b ∈ {0, 1}n also a

random binary string. Against i.i.d. attacks (attacks where Eve does the same thing

to every qubit), this protocol can tolerate a bit error rate < pc ≈ 0.14.

What to do about general attacks though? Alice and Bob can use a symmetric

protocol therefore discarding n− k quibits and leaving the remaining qubits in a state

approximately equal to
∫
dµ(σ)σ⊗k with error k/n. In other words we can sacrifice

O(1/ε2) qubits to learn σ to error ε. Normally in cryptography we expect that security

should be exponentially good in the amount of effort made, but here we can only keep

O(
√
n) qubits and the error decreases as O(1/n).

23.2.3 Exponential de Finetti Theorem

Sometimes other theorems help us to get better bounds. The exponential de Finetti

theorem states that if ρn+k ∈ Ddn+k symmetric, then

ρk = trn(ρn+k) ≈
∫
dµ(σ)σk−r ⊗ φr

Where φr is just an arbitrary density matrix on r systems. In this case we find that

the error is approximately less than or equal to kO(d) exp −kr
n+k

.
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23.2.4 de Finetti Reductions

If ρn ∈ Ddn ∈ Sym

ρk ≤ (n+ 1)d
2

∫
σ∈Dd

σ⊗n dσ

Then we get that for some bad event B,

P(B) = tr(Mρn) ≤ (n+ 1)O(d2)

∫
dσ tr(Mσ⊗n)

If our probability is exponentially small, paying a polynomial pre-factor won’t mat-

ter, so this can be useful for upper bounds.

23.2.5 Applications to Classical Optimization Algorithms

The goal of the optimization algorithms is to find

hs(y) = max
x∈S
〈x, y〉

For density matrices Dd and measurement M we have

hDd
(M) = ‖M‖∞

Solving the following is much harder however

hsep(M) = max
α,β∈Dd

tr(M(α⊗ β))

It is NP hard to get error O(1/d). Define the following set

SepSym(d, k) = conv{σ⊗k : σ ∈ Dd}

We have that

SepSym(d, k) ⊆ SymExt(d, k, n) = {ρk ∈ Ddk : ∃ρn ∈ Ddn , symmetric}

We have that
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hSepSym(M) ≤ hSymExt ≤ hSepSym(M) +O(
d2k

n
)

23.2.6 Monogamy Using Information Theory

Let system A be entangled with systems B1, . . . , Bn such that Bi is conditionally in-

dependent of Bj given A for i 6= j. There is a trade off between entanglement of

ρAB1 , · · · , ρABn without requiring symmetry assumptions and n ≈ log d instead of

poly(d).

We have that

2 log dA ≥ I(A : B1, . . . , Bn)

= I(A : B1) + I(A : B2|B1) + · · ·+ I(A : Bn|B1 . . . Bn−1

Ej∈[n]I(A : Bj|Bj−1
1 ) = 2 log(dA)/n ≤ ε2 if n ≥ 2 log(dA)

ε2

Why is this helpful? squashed entanglement:

Esq(ρ
AB)− inf{1

2
I(A : B|E) : ρABE an extension of ρAB}

Then we have that EiEsq(ρABi) ≤ log(dA)
n

.

ρAB is n-extendable if ∃ρ̃AB1...Bn s.t. ρAB = ρ̃ABi∀i. Then we have Esq(ρ) ≤
log(dA)/n.

We have that

ED ≤ Esq ≤ EF

But if Esq(ρ) ≤ ε2, is ρ close to Sep? On PSET 9 we will show that if ρ is log(dA)
ε2

-

extendable then we have that

max
M∈1-LOCC

min
σ∈Sep

|tr(M(ρ− σ))| ≤ ε

This gives us non-trivial approximation bounds for runtime dO(log d).


