
Q. Inf. Science 3 (8.372 / 18.S996) — Fall 2022

Assignment 6

Due: Friday, Oct 22, 2022 at 5pm on gradescope.

1. Fano’s inequality

Let M and M̂ be two random variables defined over an alphabet of size d such that

Pr
[
M ̸= M̂

]
≤ ϵ. Prove that

H(M̂ |M) ≤ H2(ϵ) + ϵ log(d). (1)

As a hint, you may want to define a random variable E that is 1 if M = M̂ and is 0 if
M ̸= M̂ , and then expand the conditional entropy H(EM |M̂) in two ways as

H(EM̂ |M) = H(M̂ |M) +H(E|MM̂) (2)

= H(E|M) +H(M̂ |EM) (3)

2. Feedback-assisted capacity The proof in lecture of Shannon’s noisy coding theorem
did not allow Bob to send messages back to Alice, an ability called “feedback.” Suppose
that after receiving each channel output Yi, Bob can noiselessly send Alice an arbitrary
message. Modify the proof in lecture to show that the same converse still holds. You do
not need to repeat the parts of the proof that are unchanged. As a hint, try to show that
I(M ;Y n) ≤ H(Y n)−

∑n
i=1 H(Yi|Xi).

3. Entanglement-assisted capacity For classical channels, shared randomness does not
help the capacity. One way to see this is that feedback can be used to share randomness,
and feedback does not help the capacity. But for quantum channels, we know that
entanglement between sender and receiver can improve the classical capacity, as seen
in the example of super-dense coding. In fact, free entanglement dramatically simplifies
the quantum capacity. Let CE(N ) denote the asymptotic rate that N : A′ → B can send
classical bits when assisted by unlimited EPR pairs between sender and receiver. It turns
out that

CE(N ) = max
ρ

CE(N , ρ) where CE(N , ρ) := I(A : B)τ , (4)

ρ is maximized over all density matrices on A′, ϕρ
AA′ is a purification of ρ, and

τAB = (idA⊗NA′→B)(ϕ
ρ
AA′). (5)
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(a) Consider the special case in which the maximum in (4) is achieved by ρ = I/d, where
d = |A|. Define the generalized Paulis (also called Weyl-Heisenberg operators) by

σxy :=
d−1∑
z=0

ωzy |z + x⟩ ⟨z| , (6)

where x, y ∈ {0, 1, . . . , d− 1}, z + x is defined mod d and ω := e2πi/d. Show that

E(M) :=
1

d2

∑
x,y

σx,yMσ†
x,y =

I

d
tr[M ], (7)

for any matrix M .

Consider the following coding scheme for Alice. She chooses x, y uniformly randomly,
applies σxy to her half of an entangled state

|Φ⟩A′B′ :=
1√
d

d∑
i=1

|i⟩A′ ⊗ |i⟩B′ (8)

|Φ⟩A′B′ and then sends system A′ through the channel. We can express the resulting
ensemble as a single state with system X containing Alice’s encoding and systems
B and B′ representing Bob’s channel output and piece of the shared entanglement.
This is depicted in the following circuit diagram.

xy X

ΘXBB′
A′ σxy N

|Φ⟩A′B′ B

B′ B′

ΩXA′B′

ΩXA′B′ :=
1

d2

∑
xy

|xy⟩⟨xy|X ⊗ (σxy ⊗ I)ΦA′B′(σxy ⊗ I)† (9)

ΘXBB′ := (NA′→B ⊗ idB′X)(Ω) (10)

Compute I(X : BB′)Θ in terms of I(A : B)τ . Using the HSW theorem, what can
you then conclude about CE? [Hint: Recall that (X ⊗ I) |Φ⟩ = (I ⊗XT ) |Φ⟩.]

(b) Input concavity. Show that CE(N , ρ) is independent of the choice of purification ϕρ.
Show that CE(N , ρ) is concave in the input ρ. [Hint: purify

∑
x p(x) |x⟩ ⟨x| ⊗ ϕρx .]

(c) [Optional.] Assume now that (4) has been shown to be true. Prove that the capacity
is additive, i.e. that

CE(N1 ⊗N2) = CE(N1) + CE(N2). (11)
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