Q. Inf. Science 3 (8.372 / 18.S996) — Fall 2022

Assignment 8

Due: Friday, Nov 4, 2022 at 5pm on gradescope.

1. **PPT test and Werner states** For a bipartite state $\rho_{AB} = \sum_{ijkl} (\rho_{AB})_{ijkl} |i\rangle\langle j| \otimes |k\rangle\langle l|$ define the partial transpose

$$\rho^{\Gamma} := (\operatorname{id} \otimes T)(\rho) = \sum_{ijkl} (\rho_{AB})_{ijkl} |i\rangle\langle j| \otimes |l\rangle\langle k|$$
(1)

We say that ρ is PPT if it has Positive [semi-definite] Partial Transpose, i.e. if $\rho^{\Gamma} \geq 0$. We saw in lecture that all separable states are PPT.

- (a) The transpose is a basis-dependent operation. However, show that the set PPT is invariant under local unitaries, i.e. if $\rho \in \text{PPT}$ then $(U \otimes V)\rho(U \otimes V)^{\dagger} \in \text{PPT}$ as well. (You will not need it here but your proof should work even if U, V are not unitary.)
- (b) Let F denote the SWAP operator, i.e. $F = \sum_{i,j} |i,j\rangle \langle j,i|$. Define the projectors $\Pi_{\pm} = (I \pm F)/2$ on $\mathbb{C}^d \otimes \mathbb{C}^d$. These are called the symmetric and antisymmetric projectors respectively. Verify that $\operatorname{tr} \Pi_{\pm} = d(d \pm 1)/2$. Define the Werner state

$$W_{\lambda} := \lambda \frac{\Pi_{+}}{d(d+1)/2} + (1-\lambda) \frac{\Pi_{-}}{d(d-1)/2}$$
 (2)

Calculate F^{Γ} and W_{λ}^{Γ} . For which values of λ is $W_{\lambda} \in PPT$?

- (c) We say a channel $\mathcal{N}_{A'\to B}$ is PPT if its Jamiolkowski state $\omega(\mathcal{N})$ is in PPT. For what values of p,d is the depolarizing channel $\mathcal{D}_p^d(\rho) = (1-p)\rho + p\frac{I}{d}$ PPT?
- (d) Show that if ρ is a PPT state and $|\Phi_d\rangle = d^{-1/2} \sum_{i=1}^d |i\rangle \otimes |i\rangle$ then $\operatorname{tr}[\Phi_d \rho] \leq 1/d$. Along the way you may find it helpful to show that $\operatorname{tr}[A^{\Gamma}B^{\Gamma}] = \operatorname{tr}[AB]$. Recall also the bound $\operatorname{tr}[AB] \leq ||A||_1 ||B||_{\infty}$.
- (e) Consider now the problem of distinguishing the Werner states W_0 and W_1 using LOCC (local operations and classical communication). The measurement consists of operators $\{M_0, M_1\}$ such that $0 \leq M_0$, $0 \leq M_1$ and $M_0 + M_1 = I$. It turns out that if $\{M_0, M_1\}$ can be implemented using LOCC then it should additionally satisfy $M_0^{\Gamma} \geq 0$ and $M_1^{\Gamma} \geq 0$.

We can further restrict the form of M_0, M_1 using symmetry. Show that F commutes with $U \otimes U$ for all $U \in \mathcal{U}(d)$ and therefore that W_{λ} does as well. It turns out that this allows us to show that M_0, M_1 are (without loss of generality) linear combinations of I and F, i.e.

$$M_0 = aI + bF$$
 and $M_1 = (1 - a)I - bF$ (3)

for $a, b \in \mathbb{R}$. (Both "it turns out" facts in this problem are non-trivial but will be discussed in lecture.) Define the *bias* of the measurement to be

$$\delta := \operatorname{tr} M_0 W_0 + \operatorname{tr} M_1 W_1 - 1. \tag{4}$$

(If the probability of guessing the state correctly is p then $\delta = 2p - 1$.)

Show that $\delta \leq O(1/d)$ for LOCC measurements but $\delta = 1$ is possible for unrestricted measurements. Along the way you should give conditions for which values of a, b yield valid measurements (i.e. satisfy $M_0 \geq 0$ and $M_1 \geq 0$) as well as satisfying the additional LOCC condition: $M_0^{\Gamma} \geq 0$ and $M_1^{\Gamma} \geq 0$. Show also that $\delta = O(1/d)$ is achievable by measuring both systems in the basis $\{|1\rangle, \ldots, |d\rangle\}$ and checking whether the answers agree.

As a result we call the Werner states *data hiding* states since they can be used to hide a bit in a way that is concealed from LOCC measurements but accessible to general measurements.