
Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 1

Due: Tuesday, Sep 17, 2024 at 2pm
Turning in your solutions: Upload a single pdf file (typed or neatly handwritten) to
gradescope.
Collaboration policy: You may work individually or together in small groups but should
write up your solutions individually.
Recommended collaboration approach: We recommend that you find 1-2 other people
to work with. You can use psetpartners.mit.edu to find partners if you don’t already know
people in the class.

Then for each problem, attempt it first on your own, and work until you get stuck. When
you meet with the group, discuss each problem even if you’ve already solved it. If the whole
group is stuck then we can answer questions on Piazza, in office hours, and can also schedule
meetings at other times.

1. Fidelity and trace distance The trace distance and fidelity for a pair of states ρ
and σ are defined, respectively, as

T (ρ, σ) =
1

2
∥ρ− σ∥1 and F (ρ, σ) = ∥√ρ

√
σ∥1 (1)

(a) Pure states. If ρ and σ are both pure then prove that

F 2 + T 2 = 1 (2)

(b) Monotonicity. For a TPCP map E prove that

F (ρ, σ) ≤ F (E(ρ), E(σ)) (3)

T (ρ, σ) ≥ T (E(ρ), E(σ)) (4)

As a hint, you should use Uhlmann’s theorem for fidelity and the variational
characterization of trace distance.

(c) Commuting states. Suppose that ρ = diag(p) and σ = diag(q) for some probability
distributions p, q. Observe that F (ρ, σ) =

∑
x

√
pxqx and T = 1

2

∑
x |px − qx|.

Prove that
T + F ≥ 1 (5)

(d) Prove that for any ρ, σ, we have

1− F ≤ T ≤
√
1− F 2 (6)

As a hint, apply the monotonicity property you proved above to the carefully
chosen measurement channels E .

(e) For any δ ∈ [0, 1] find a pair of states such that T = δ and F = 1− δ. Also find
a pair of states such that T = δ and F =

√
1− δ2.
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2. Bit commitment [50 pts; 10 / subpart]

(a) Consider the following bit commitment (BC) protocol. Alice samples a uniformly
random bit r ∈ {0, 1}. To commit to a bit b, in the commit phase she sends Bob
a qubit |ψ⟩ := Hb |r⟩ (with H the Hadamard gate), or more concretely:

b r |ψ⟩

0 0 |0⟩
0 1 |1⟩
1 0 |+⟩
1 1 |−⟩

In the reveal phase, she tells Bob b, r, he measures in the basis defined by b (i.e.
either {|0⟩ , |1⟩} or {|+⟩ , |−⟩}) and checks whether he has the claimed state. If
so he accepts, and otherwise he rejects.

Note that this description of the protocol is for what honest participants should
do. Security requires that it remain binding/hiding even when Alice/Bob deviates
from the honest protocol arbitrarily.

Is this scheme valid? Hiding? Binding? Prove your answers. (Don’t just cite the
no-go theorem. If the answer to one of these is “no” because of an attack on the
protocol, you should explicitly describe it.)

(b) Since that first protocol didn’t work, let’s try again. Consider a scheme that is
the same as above except now |ψ⟩ = Hr |b⟩, i.e.

b r |ψ⟩

0 0 |0⟩
0 1 |+⟩
1 0 |1⟩
1 1 |−⟩

Now the measurement basis is determined by r, not b, but still Bob can check
whether his qubit is indeed in the state |ψ⟩ corresponding to the values of r, b
that Alice tells him.

Again determine whether the scheme is perfectly valid, hiding and/or binding.

Here the answers to the hiding/binding questions may be that they are neither
perfectly binding nor hiding. To quantify this, suppose that after the commit
phase Bob attempts to guess b. In a perfectly hiding protocol, his probability
of success Pguess would be 1/2. (Assume for simplicity that b is uniformly dis-
tributed.) How high can his Pguess be in this protocol?

Suppose that Bob plays honestly and Alice acts arbitrarily up to the commit
phase. Describe Alice’s actions by the variable A. Now suppose that after the
commit phase, Alice attempts to reveal the bit b, i.e. telling Bob that her bit was
b all along. (Here A could have been a commitment to a determinstic or random
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bit, or something else entirely.) Let Pr[accept b|A] be the probability that she
convinces Bob to accept b. We abbreviate this by Pb := Pr[accept b|A], leaving
the A dependence implicit. In a perfectly binding protocol, we should have

max
A

[P0 + P1] ≤ 1 (7)

The important feature of this equation is that Alice’s actions before the commit
phase do not depend on her choice of bit b, but after the commit phase, they do.

In this protocol, is maxA[P0 + P1] equal to 1 or > 1? If = 1 then justify your
answer. If > 1, then describe a protocol for Alice achieving this.

(c) Suppose that the qubits are stored in photons, which are relatively easy to prepare
and measure, but hard to store for long periods of time. What implications, if
any, does this have for the practical security of the scheme in part (a)?

(d) Suppose that Alice and Bob can perform a BC scheme that is perfectly valid and
binding but imperfectly hiding, so that Pguess = 1/2 + ϵ. Analyze the following
“hiding amplification” scheme. Alice wishes to commit the bit b. She chooses bits
b1, b2 randomly subject to the constraint that b1 + b2 = b mod 2, i.e. if b = 0 then
b1, b2 are either 0, 0 or 1, 1 and if b = 1 then b1, b2 are either 0, 1 or 1, 0. Then she
commits bits b1 and b2 separately with the original imperfect scheme. After Alice
reveals b1, b2, Bob uses these to compute b. How well hidden is b? i.e. in the new
scheme, what is Pguess? Assume that Bob’s best strategy is just to try to guess b1
and b2 separately, and not to make any kind of collective measurement.

(e) Suppose that Alice and Bob have a protocol for performing oblivious transfer
(OT), also known as “1 out of 2 oblivious transfer”. In OT, Alice inputs bits
x0, x1, Bob inputs a bit b, Alice receives no output and Bob receives only the
output xb. In other words, he learns one of Alice’s input bits but not the other,
and Alice doesn’t learn which one Bob chose.

Show how the ability to perform OT implies the ability to perform BC. The BC
protocol should be almost perfect, meaning perfectly or almost perfectly hiding,
binding and valid. For partial credit, show how to achieve a BC protocol that
yields some improvement over what is possible with only classical communication.
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