Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 10

Due: Tuesday, Dec 3, 2024 at $9pm$

Turning in your solutions: Upload a single pdf file to [gradescope.](https://www.gradescope.com/courses/857725/assignments/5372311)

1. A pretty good problem

In class it was claimed that $I(A; C|B)_{\rho} = 0$ if and only if

$$
\rho^{ABC} = \sum_{\alpha} p_{\alpha} \sigma_{\alpha}^{AB_{\alpha}^{L}} \otimes \omega_{\alpha}^{B_{\alpha}^{R}C},\tag{1}
$$

where the system B can be decomposed as

$$
B = \bigoplus_{\alpha} B_{\alpha}^{L} \otimes B_{\alpha}^{R}
$$
 (2)

- (a) Assume that $\rho > 0$, i.e. ρ is full rank. Show that eq. [\(1\)](#page-0-0) implies that $\rho =$ $e^{-X_{AB}-Y_{BC}}$ for some commuting Hermitian operators X_{AB}, Y_{BC} . (The reverse implication is also true but you don't need to prove it here.)
- (b) **Adjoint channels**. Define the *Hilbert-Schmidt* inner product between two matrices to be

$$
\langle X, Y \rangle := \operatorname{tr} \left[X^{\dagger} Y \right]. \tag{3}
$$

The adjoint of a superoperator $T \in L(L(A), L(B))$ with respect to this inner product is defined by the expression

$$
\langle X, T(Y) \rangle = \langle T^{\dagger}(X), Y \rangle.
$$
 (4)

This is also known as the Heisenberg picture for quantum operations.

- i. If $T(\rho) = \sum_{i \in [k]} A_i \rho A_i^{\dagger}$ then what are the Kraus operators of T^{\dagger} ?
- ii. Let T be a superoperator, not necessarily a valid quantum operation. What condition on T^{\dagger} is equivalent to the condition that T is trace preserving? What condition on T^{\dagger} is equivalent to the condition that T is completely positive?
- iii. tr_C is a quantum channel from $B \otimes C$ to B. What is tr_C^{\dagger} ?
- iv. Let $\mathcal{M} = \{M_1, \ldots, M_k\}$ be a POVM. Define a new POVM $\mathcal{M} \circ \mathcal{N}$ by applying N and then measuring M. Write down the POVM elements of $M \circ N$ and justify your answer.

(c) The Petz recovery map, also known as the transpose channel, is a method of approximately reversing a quantum channel $\mathcal N$ with respect to input state σ . Given σ, \mathcal{N} the Petz map is the operation $\mathcal{P}_{\sigma, \mathcal{N}}$ defined as

$$
\mathcal{P}_{\sigma,\mathcal{N}}(\rho)\sigma^{1/2}\mathcal{N}^{\dagger}(\mathcal{N}(\sigma)^{-1/2}\rho\mathcal{N}(\sigma)^{-1/2})\sigma^{1/2} \tag{5}
$$

Assume for convenience that σ and $\mathcal{N}(\rho)$ are full rank. Show that $\mathcal{P}_{\sigma,\mathcal{N}}(\rho)$ is a TPCP map, i.e. a valid quantum operation.

- (d) Calculate the Petz recovery map for a state σ_{BC} and $\mathcal{N} = \text{tr}_C$; denote this \mathcal{P} . Show that if σ_{ABC} satisfies $I(A;C|B)_{\sigma}=0$ then $(id_A \otimes \mathcal{P}_{B\to BC})\sigma_{AB}=\sigma_{ABC}$.
- (e) Now apply the Petz recovery map to the state distinguishability problem. Here we are given state ρ_x with probability p_x (for $x \in [n]$) and want to guess x. Let

$$
\sigma^{XQ} = \sum_{x} p_x |x \rangle \langle x |^X \otimes \rho_x^Q, \tag{6}
$$

and calculate the Petz recovery map for the operation tr_X . Interpret this as a measurement with operators $M_x = \rho^{-1/2} A_x \rho^{-1/2}$, with $\rho := \sigma^Q = \sum_x p_x \rho_x$ and find A_x . This measurement is called the *pretty good measurement*, or PGM.

(f) With the same setup as the previous part, let $\{N_x\}$ be the measurement which achieves the optimal guessing probability, i.e. it achieves the maximum in

$$
P_{\text{opt}} := \max_{\{N_x\}} \sum_x p_x \operatorname{tr}[N_x \rho_x] \tag{7}
$$

Let $P_{\text{PGM}} := \sum_x p_x \text{tr}[M_x \rho_x]$ where $\{M_x\}$ is the PGM from the previous part. Prove that

$$
P_{\text{PGM}} \ge P_{\text{opt}}^2 \tag{8}
$$

This justifies the term "pretty good measurement."

2. Rényi subaddivity?

The error term in merging is proportional to:

$$
\text{tr}\left[\psi_{AR}^2\right] + \text{tr}\left[\psi_A^2\right] \text{tr}\left[\psi_R^2\right] = 2^{-S_2(AR)} + 2^{-S_2(A) - S_2(R)}.\tag{9}
$$

If it were true that one of these terms was dominated by the other, then we could give a simplified upper bound. This problem will explore that possibility.

- (a) Show that there exists a choice of ψ for which $S_2(AR) \gg S_2(A) + S_2(R)$ and another choice where $S_2(AR) \ll S_2(A) + S_2(R)$.
- (b) How does this change when we replace the Rènyi entropy S_2 with the von Neumann entropy S ?

3. An area law for the mutual information

Consider a local Hamiltonian $H = \sum_{(i,j) \in E} h_{i,j}$ where E is a collection of edges defining a graph over a vertex set V and $h_{i,j}$ is a term acting on the qudits at sites i and j. Partition V into A, A and write H as

$$
H = H_A + H_{\bar{A}} + H_{\partial},\tag{10}
$$

where H_A (resp. $H_{\bar{A}}$) are the terms acting entirely within A, \bar{A} and H_{∂} is the sum of all the interactions between A and \overline{A} , i.e. either $i \in A$, $j \in \overline{A}$ or vice versa.

Let
$$
\sigma := \frac{e^{-H/T}}{\text{tr}[e^{-H/T}]}
$$
 be the Gibbs state.

(a) Prove that

$$
I(A; \bar{A})_{\sigma} \le \frac{\|H_{\partial}\|}{T}
$$
\n(11)

(b) What does this tell us about the amount of entanglement between A and A in the ground state? If $T = 0$ then σ is the ground state (or mixture over all ground states) but then eq. [\(11\)](#page-2-0) is vacuous. However, suppose we further assume a bound on the density of states. Specifically, that the ground state energy is E_0 and that the number of states of energy $\leq E_0 + k$ is $\leq n^k$. Show how this yields a nontrivial bound on the ground-state entanglement entropy.

4. Area law correction in the surface code

This problem is optional. But I hope you find it tempting!

The surface (or toric) code is defined on a lattice with qubits on each edge, and stabilizer generators

$$
A_s = \prod_{e \sim s} X_e \qquad B_p = \prod_{e \sim p} Z_e \tag{12}
$$

Here s refers to a "site" (or vertex) and $e \sim s$ means that e is one of the four edges touching this site. These four edges make a star. Next p refers to a "plaquette" (or square) and $e \sim p$ refers to the four edge bordering this plaquette. This is illustrated in $??$ (a).

For simplicity, we will consider the surface code with smooth boundaries, or else on the sphere, so that there are no logical qubits. This means that there is a unique state $|\psi\rangle$ stabilized by all the $\{A_s\}$ and $\{B_v\}$. (The story is similar for the case of the torus or rough boundaries when there are some logical qubits but we wish to avoid those complications for now.)

Let A be an subregion of size $k \times k$, illustrated in ??(b). Compute $S(\psi_A)$ as a function of k. Your answer should be of the form $\alpha k - \gamma$. The term γ is known as the topological entanglement entropy and was introduced in [hep-th/0510092.](https://arxiv.org/abs/hep-th/0510092) (You do not need anything from that paper to solve this problem.)

Figure 1: (a) Star A_s and plaquette B_p operators. (b) A is a subregion of size $k \times k$. Here $k=4.$

As a hint, a stabilizer state $|S\rangle$ is defined in terms of a maximal stabilizer subgroup S of the Pauli group $P_n := \pm \{I, X, iY, Z\}^{\otimes n}$. We require that $-1 \in S$, S is abelian and $|S| = 2^n$, and then have

$$
|S\rangle\langle S| = |S|^{-1} \sum_{s \in S} s = \prod_{i=1}^{n} \frac{I + g_i}{2},\tag{13}
$$

where g_1, \ldots, g_n generates S. If instead $|S| = 2^m$ for $m \leq n$ then in general we obtain the mixed state

$$
\rho_S := |S|^{-1} \sum_{s \in S} s = \prod_{i=1}^m \frac{I + g_i}{2}.
$$
\n(14)

This has 2^{n-m} eigenvalues, each equal to 2^{m-n} .