
Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 10

Due: Tuesday, Dec 3, 2024 at 9pm
Turning in your solutions: Upload a single pdf file to gradescope.

1. A pretty good problem

In class it was claimed that I(A;C|B)ρ = 0 if and only if

ρABC =
∑
α

pασ
ABL

α
α ⊗ ωBR

αC
α , (1)

where the system B can be decomposed as

B =
⊕
α

BL
α ⊗BR

α (2)

(a) Assume that ρ > 0, i.e. ρ is full rank. Show that eq. (1) implies that ρ =
e−XAB−YBC for some commuting Hermitian operators XAB, YBC . (The reverse
implication is also true but you don’t need to prove it here.)

(b) Adjoint channels. Define the Hilbert-Schmidt inner product between two ma-
trices to be

⟨X, Y ⟩ := tr
[
X†Y

]
. (3)

The adjoint of a superoperator T ∈ L(L(A), L(B)) with respect to this inner
product is defined by the expression

⟨X,T (Y )⟩ = ⟨T †(X), Y ⟩. (4)

This is also known as the Heisenberg picture for quantum operations.

i. If T (ρ) =
∑

i∈[k]AiρA
†
i then what are the Kraus operators of T †?

ii. Let T be a superoperator, not necessarily a valid quantum operation. What
condition on T † is equivalent to the condition that T is trace preserving?
What condition on T † is equivalent to the condition that T is completely
positive?

iii. trC is a quantum channel from B ⊗ C to B. What is tr†C?

iv. LetM = {M1, . . . ,Mk} be a POVM. Define a new POVMM◦N by applying
N and then measuring M. Write down the POVM elements of M◦N and
justify your answer.
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(c) The Petz recovery map, also known as the transpose channel, is a method of
approximately reversing a quantum channel N with respect to input state σ.
Given σ,N the Petz map is the operation Pσ,N defined as

Pσ,N (ρ)σ1/2N †(N (σ)−1/2ρN (σ)−1/2)σ1/2 (5)

Assume for convenience that σ and N (ρ) are full rank. Show that Pσ,N (ρ) is a
TPCP map, i.e. a valid quantum operation.

(d) Calculate the Petz recovery map for a state σBC and N = trC ; denote this P .
Show that if σABC satisfies I(A;C|B)σ = 0 then (idA ⊗PB→BC)σAB = σABC .

(e) Now apply the Petz recovery map to the state distinguishability problem. Here
we are given state ρx with probability px (for x ∈ [n]) and want to guess x. Let

σXQ =
∑
x

px |x⟩⟨x|X ⊗ ρQx , (6)

and calculate the Petz recovery map for the operation trX . Interpret this as a
measurement with operators Mx = ρ−1/2Axρ

−1/2, with ρ := σQ =
∑

x pxρx and
find Ax. This measurement is called the pretty good measurement, or PGM.

(f) With the same setup as the previous part, let {Nx} be the measurement which
achieves the optimal guessing probability, i.e. it achieves the maximum in

Popt := max
{Nx}

∑
x

px tr[Nxρx] (7)

Let PPGM :=
∑

x px tr[Mxρx] where {Mx} is the PGM from the previous part.
Prove that

PPGM ≥ P 2
opt (8)

This justifies the term “pretty good measurement.”

2. Rényi subaddivity?

The error term in merging is proportional to:

tr
[
ψ2
AR

]
+ tr

[
ψ2
A

]
tr
[
ψ2
R

]
= 2−S2(AR) + 2−S2(A)−S2(R). (9)

If it were true that one of these terms was dominated by the other, then we could give
a simplified upper bound. This problem will explore that possibility.

(a) Show that there exists a choice of ψ for which S2(AR) ≫ S2(A) + S2(R) and
another choice where S2(AR) ≪ S2(A) + S2(R).

(b) How does this change when we replace the Rènyi entropy S2 with the von Neu-
mann entropy S?

2



8.372— Fall 2024 Assignment 10

3. An area law for the mutual information

Consider a local Hamiltonian H =
∑

(i,j)∈E hi,j where E is a collection of edges defining
a graph over a vertex set V and hi,j is a term acting on the qudits at sites i and j.
Partition V into A, Ā and write H as

H = HA +HĀ +H∂, (10)

where HA (resp. HĀ) are the terms acting entirely within A, Ā and H∂ is the sum of
all the interactions between A and Ā, i.e. either i ∈ A, j ∈ Ā or vice versa.

Let σ := e−H/T

tr[e−H/T ]
be the GIbbs state.

(a) Prove that

I(A; Ā)σ ≤ ∥H∂∥
T

(11)

(b) What does this tell us about the amount of entanglement between A and Ā in
the ground state? If T = 0 then σ is the ground state (or mixture over all ground
states) but then eq. (11) is vacuous. However, suppose we further assume a bound
on the density of states. Specifically, that the ground state energy is E0 and that
the number of states of energy ≤ E0+k is ≤ nk. Show how this yields a nontrivial
bound on the ground-state entanglement entropy.

4. Area law correction in the surface code

This problem is optional. But I hope you find it tempting!

The surface (or toric) code is defined on a lattice with qubits on each edge, and stabilizer
generators

As =
∏
e∼s

Xe Bp =
∏
e∼p

Ze (12)

Here s refers to a “site” (or vertex) and e ∼ s means that e is one of the four edges
touching this site. These four edges make a star. Next p refers to a “plaquette” (or
square) and e ∼ p refers to the four edge bordering this plaquette. This is illustrated
in ??(a).

For simplicity, we will consider the surface code with smooth boundaries, or else on
the sphere, so that there are no logical qubits. This means that there is a unique state
|ψ⟩ stabilized by all the {As} and {Bp}. (The story is similar for the case of the torus
or rough boundaries when there are some logical qubits but we wish to avoid those
complications for now.)

Let A be an subregion of size k×k, illustrated in ??(b). Compute S(ψA) as a function
of k. Your answer should be of the form αk− γ. The term γ is known as the topolog-
ical entanglement entropy and was introduced in hep-th/0510092. (You do not need
anything from that paper to solve this problem.)
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A

Ā

(a) (b)

Figure 1: (a) Star As and plaquette Bp operators. (b) A is a subregion of size k × k. Here
k = 4.

As a hint, a stabilizer state |S⟩ is defined in terms of a maximal stabilizer subgroup S
of the Pauli group Pn := ±{I,X, iY, Z}⊗n. We require that −1 ∈ S, S is abelian and
|S| = 2n, and then have

|S⟩⟨S| = |S|−1
∑
s∈S

s =
n∏

i=1

I + gi
2

, (13)

where g1, . . . , gn generates S. If instead |S| = 2m for m ≤ n then in general we obtain
the mixed state

ρS := |S|−1
∑
s∈S

s =
m∏
i=1

I + gi
2

. (14)

This has 2n−m eigenvalues, each equal to 2m−n.
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