Q. Inf. Science 3 (8.372 / 18.S996) — Fall 2022

 Assignment 3

 Assignment 3}

Due: Friday, Sep 30, 2022 at 5pm
Turning in your solutions: Upload a single pdf file (typed or neatly handwritten) to gradescope.

1. Gentle measurement. Suppose we perform a two-outcome measurement $\{M, I-M\}$ with $0 \leq M \leq I$. This does not uniquely define the post-measurement states, but we will assume that when the first outcome occurs, ρ is mapped to

$$
\begin{equation*}
\sigma:=\frac{\sqrt{M} \rho \sqrt{M}}{\operatorname{tr}[M \rho]} . \tag{1}
\end{equation*}
$$

(This happens with probability $\operatorname{tr}[M \rho]$.) Quantum measurements can sometimes cause significant disturbance, so it is possible that σ is far from ρ, but this turns out not to happen when $\operatorname{tr}[M \rho]$ is close to 1 . Prove that

$$
\begin{equation*}
F(\rho, \sigma) \geq \sqrt{\operatorname{tr} M \rho} \tag{2}
\end{equation*}
$$

Hint: Can you show that $\sqrt{M} \geq M$?
2. Channel fidelity Consider a compression scheme for ρ, consisting of an encoding \mathcal{E} followed by a decoding \mathcal{D} Let $\mathcal{N}:=\mathcal{E} \circ \mathcal{D}$. (In class we considered the case where $\rho=\sigma^{\otimes n}$. For simplicity, in this problem we will just talk about compressing ρ without making use of any tensor power structure.)

This problem will discuss different accuracy metrics for the compression scheme. We saw that it is not enough for $F(\rho, \mathcal{N}(\rho))$ to be high. Three other possibilities are

$$
\begin{equation*}
\text { entanglement fidelity } \quad F_{e}:=F\left(\phi^{\rho},(\mathcal{N} \otimes \mathrm{id}) \phi^{\rho}\right) \tag{3a}
\end{equation*}
$$

where $\phi_{A B}^{\rho}$ is a pure state satisfying $\operatorname{tr}_{B} \phi_{A B}^{\rho}=\rho_{A}$ (it turns out that F_{e} should not depend on which purification is used;

$$
\begin{equation*}
\text { average fidelity } \quad \bar{F}:=\min \sum_{i} p_{i} F\left(\varphi_{i}, \mathcal{N}\left(\varphi_{i}\right)\right), \tag{3b}
\end{equation*}
$$

where the min is taken over all decompositions of ρ into pure states (not necessarily orthogonal) $\rho=\sum_{i} p_{i}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|$; and

$$
\begin{equation*}
\text { eigenbasis fidelity } \quad F_{\lambda}:=\sum_{i} \lambda_{i} F\left(\psi_{i}, \mathcal{N}\left(\psi_{i}\right)\right), \tag{3c}
\end{equation*}
$$

for the eigendecomposition of ρ into $\sum_{i} \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$. Prove that

$$
\begin{equation*}
F_{e} \leq \bar{F} \leq F_{\lambda} \tag{4}
\end{equation*}
$$

Find an example where F_{λ} is much higher than \bar{F}. It turns out that if $\bar{F}=1-\epsilon$ then $F_{e} \geq 1-\frac{3}{2} \epsilon$ but this is not easy to prove, and is not a required part of the pset. Some discussion of this point will be in the pset solutions, and feel free to work on the question yourself if you like.

3. Entropy inequalities.

(a) If $|\psi\rangle_{A B}$ is a pure state show that $S(A)=S(B)$.
(b) Triangle inequality. If $|\psi\rangle_{A B C}$ is pure, then $S(A) \leq S(B)+S(C)$.
(c) Araki-Lieb inequality. For a general state $\rho_{A B}$,

$$
\begin{equation*}
|S(A)-S(B)| \leq S(A B) \tag{5}
\end{equation*}
$$

(d) $|S(A \mid B)| \leq S(A)$.
(e) $I(A: B \mid C) \leq 2 \log \min (\operatorname{dim} A, \operatorname{dim} B)$
(f) Optional. Finish the proof that $D(\rho \| \sigma) \geq 0$. Hint: The concavity of \log means that $\sum_{j} p_{j} \log \left(x_{j}\right) \leq \sum_{j} \log \left(p_{j} x_{j}\right)$.

