
Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 3

Due: Tuesday, Oct 1, 2024 at 9pm
Turning in your solutions: Upload a single pdf file to gradescope.

1. Nonnegativity of quantum relative entropy Prove that D(ρ∥σ) ≥ 0. You can
use without proof the nonnegativity of the classical relative entropy. As a hint, the

concavity of log means that
∑

j pj log(xj) ≤ log
(∑

j pjxj

)
.

2. Gibbs distributions In this problem we define entropy with log base-e, i.e. ln. Also
let exp(x) := ex.

(a) Consider a classical system whose state lies in the set Ω. For simplicity assume
that Ω is finite. The energy is defined by function E : Ω → R. The Gibbs
distribution at temperature T is the probability distribution

gT (x) :=
e−E(x)/T

Z
where Z :=

∑
x∈Ω

e−E(x)/T . (1)

For given E, T , define the [Helmholtz] free energy of a probability distribution p
by

F (p) := E
x∼p

[E(x)]− TH(p) =
∑
x∈Ω

p(x)[E(x) + T ln(p(x))] (2)

This paragraph is not needed to solve the problem: As background for those unfa-
miliar with thermodynamics, the idea of free energy is that there might be many
microscopic configurations x compatible with some macroscopic variables X, such
as pressure or volume. The probability of X is then gT (X) =

∑
x∈X gT (x). If ev-

ery x ∈ X has the same energy and p is uniform over X then H(p) = log |X| and
gT (X) = |X|gT (x) = e−F (p)/T/Z. Thus the free energy plays the same role as the
ordinary energy when considering a distribution over macrostates.

Prove that gT is a local minimum of the free energy, using calculus.

(b) Calculate F (gT ) and relate it to logZ. Calculate D(p∥gT ) and relate it to F (p)
and F (gT ). Explain how this yields an independent proof of the result from (a).

(c) Now we consider the quantum case. Let H be a finite-dimensional Hermitian
matrix. Define the Gibbs state and the free energy by

γT :=
e−H/T

tr[e−H/T ]
and F (ρ) := tr[Hρ]− TS(ρ). (3)

1

https://www.gradescope.com/courses/857725/assignments/


8.372— Fall 2024 Assignment 3

Prove that γT is a local minimum of F . Hint: Here it is easier to follow the
approach of (b) than (a). To follow (b), note that log(cA) = log(A) + log(c)I if
A is a matrix and c a scalar. If you follow (a), you might find the formula

ln(A+B) = ln(A) +

∫ ∞

0

dz
1

A+ zI
B

1

A+B + zI
. (4)

useful to evaluate the gradient of F .

(d) Is F concave, convex or neither? Does this tell us anything about the relation
between local and global minima of F?

(e) Suppose that F (ρ) ≤ F (γT ) + δ. What can you say about the trace distance
between ρ and γT ?

As a hint, the quantum Pinsker inequality states that D(ρ∥σ) ≥ 1
2
∥ρ− σ∥21.

3. Converse theorem for quantum compression
Consider a quantum data compression protocol for ρ⊗n with the following components.

(a) Alice starts with the A part of |ϕρ⟩⊗n
RA

(b) Alice applies an encoding map E to A, creating output Q. Let dimQ =: M .

(c) Alice sends Q to Bob.

(d) Bob applies a decoding map D to Q, producing output B.

Let E and D have Kraus operators {Ek} and {Dl} respectively. The fidelity of the
compression scheme is

f := F (ϕ⊗n
ρ ,D(E(ϕ⊗n

ρ ))), (5)

where fidelity is defined in the usual way as F (α, β) =
∥∥√α

√
β
∥∥
1
.

(a) Show that

f 2 =
∑
k,l

∣∣tr(DlEkρ
⊗n

)∣∣2. (6)

(b) Show that rankDlEk ≤ M .

(c) Show that

f 2 ≤
∑
k,l

tr
[
DlEkρ

⊗nE†
kD

†
l

]
tr
[
Pklρ

⊗n
]
, (7)

where each Pkl is a projector of rank ≤ M . [Hint: The matrix Cauchy-Schwarz
inequality states that tr

[
A†B

]
≤

√
tr[A†A] tr[B†B] and may be helpful.]

(d) Show that if M = 2nR for R < S(ρ) then f approaches 0 exponentially quickly as
n → ∞.
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