

Assignment 3

Due: Tuesday, Oct 1, 2024 at 9pm

Turning in your solutions: Upload a single pdf file to [gradescope](#).

1. **Nonnegativity of quantum relative entropy** Prove that $D(\rho\|\sigma) \geq 0$. You can use without proof the nonnegativity of the classical relative entropy. As a hint, the concavity of \log means that $\sum_j p_j \log(x_j) \leq \log\left(\sum_j p_j x_j\right)$.
2. **Gibbs distributions** In this problem we define entropy with log base- e , i.e. \ln . Also let $\exp(x) := e^x$.

(a) Consider a classical system whose state lies in the set Ω . For simplicity assume that Ω is finite. The energy is defined by function $E : \Omega \rightarrow \mathbb{R}$. The Gibbs distribution at temperature T is the probability distribution

$$g_T(x) := \frac{e^{-E(x)/T}}{Z} \quad \text{where} \quad Z := \sum_{x \in \Omega} e^{-E(x)/T}. \quad (1)$$

For given E, T , define the [Helmholtz] free energy of a probability distribution p by

$$F(p) := \mathbb{E}_{x \sim p}[E(x)] - TH(p) = \sum_{x \in \Omega} p(x)[E(x) + T \ln(p(x))] \quad (2)$$

This paragraph is not needed to solve the problem: As background for those unfamiliar with thermodynamics, the idea of free energy is that there might be many microscopic configurations x compatible with some macroscopic variables X , such as pressure or volume. The probability of X is then $g_T(X) = \sum_{x \in X} g_T(x)$. If every $x \in X$ has the same energy and p is uniform over X then $H(p) = \log |X|$ and $g_T(X) = |X|g_T(x) = e^{-F(p)/T}/Z$. Thus the free energy plays the same role as the ordinary energy when considering a distribution over macrostates.

Prove that g_T is a local minimum of the free energy, using calculus.

- Calculate $F(g_T)$ and relate it to $\log Z$. Calculate $D(p\|g_T)$ and relate it to $F(p)$ and $F(g_T)$. Explain how this yields an independent proof of the result from (a).
- Now we consider the quantum case. Let H be a finite-dimensional Hermitian matrix. Define the Gibbs state and the free energy by

$$\gamma_T := \frac{e^{-H/T}}{\text{tr}[e^{-H/T}]} \quad \text{and} \quad F(\rho) := \text{tr}[H\rho] - TS(\rho). \quad (3)$$

Prove that γ_T is a local minimum of F . Hint: Here it is easier to follow the approach of (b) than (a). To follow (b), note that $\log(cA) = \log(A) + \log(c)I$ if A is a matrix and c a scalar. If you follow (a), you might find the formula

$$\ln(A + B) = \ln(A) + \int_0^\infty dz \frac{1}{A + zI} B \frac{1}{A + B + zI}. \quad (4)$$

useful to evaluate the gradient of F .

- (d) Is F concave, convex or neither? Does this tell us anything about the relation between local and global minima of F ?
- (e) Suppose that $F(\rho) \leq F(\gamma_T) + \delta$. What can you say about the trace distance between ρ and γ_T ?

As a hint, the quantum Pinsker inequality states that $D(\rho\|\sigma) \geq \frac{1}{2}\|\rho - \sigma\|_1^2$.

3. Converse theorem for quantum compression

Consider a quantum data compression protocol for $\rho^{\otimes n}$ with the following components.

- (a) Alice starts with the A part of $|\phi_\rho\rangle_{RA}^{\otimes n}$
- (b) Alice applies an encoding map \mathcal{E} to A , creating output Q . Let $\dim Q =: M$.
- (c) Alice sends Q to Bob.
- (d) Bob applies a decoding map \mathcal{D} to Q , producing output B .

Let \mathcal{E} and \mathcal{D} have Kraus operators $\{E_k\}$ and $\{D_l\}$ respectively. The fidelity of the compression scheme is

$$f := F(\phi_\rho^{\otimes n}, \mathcal{D}(\mathcal{E}(\phi_\rho^{\otimes n}))), \quad (5)$$

where fidelity is defined in the usual way as $F(\alpha, \beta) = \|\sqrt{\alpha}\sqrt{\beta}\|_1$.

- (a) Show that

$$f^2 = \sum_{k,l} |\text{tr}(D_l E_k \rho^{\otimes n})|^2. \quad (6)$$

- (b) Show that $\text{rank } D_l E_k \leq M$.

- (c) Show that

$$f^2 \leq \sum_{k,l} \text{tr} \left[D_l E_k \rho^{\otimes n} E_k^\dagger D_l^\dagger \right] \text{tr} \left[P_{kl} \rho^{\otimes n} \right], \quad (7)$$

where each P_{kl} is a projector of rank $\leq M$. [Hint: The matrix Cauchy-Schwarz inequality states that $\text{tr}[A^\dagger B] \leq \sqrt{\text{tr}[A^\dagger A] \text{tr}[B^\dagger B]}$ and may be helpful.]

- (d) Show that if $M = 2^{nR}$ for $R < S(\rho)$ then f approaches 0 exponentially quickly as $n \rightarrow \infty$.