
Q. Inf. Science 3 (8.S372 / 18.996) — Fall 2022

Assignment 4

Due: Friday, Oct 7, 2020 at 5pm on gradescape.

1. Gibbs distributions In this problem we define entropy with log base-e, i.e. ln. Also
let exp(x) := ex.

(a) Consider a classical system whose state lies in the set Ω. For simplicity assume
that Ω is finite. The energy is defined by function E : Ω → R. The Gibbs
distribution at temperature T is the probability distribution

gT (x) :=
e−E(x)/T∑

x′∈Ω e−E(x′)/T
. (1)

For given E, T , define the free energy of a probability distribution p by

F (p) := E
x∼p

[E(x)]− TH(p) =
∑
x∈Ω

p(x)[E(x) + T ln(p(x))] (2)

Prove that gT is a local minimum of the free energy. There are a few different
ways to do this; probably calculus is the most straightforward.

(b) Now repeat the above exercise quantumly. Let H be a finite-dimensional Hermi-
tian matrix. Define the Gibbs state

γT :=
e−H/T

tr[e−H/T ]
(3)

and the free energy
F (ρ) := tr[Hρ]− TS(ρ). (4)

Prove that γT is a local minimum of F . Hint: One way to solve this problem is
to use the formula

ln(A+B) = ln(A) +

∫ ∞

0

dz
1

A+ zI
B

1

A+B + zI
. (5)

to evaluate the gradient of F . Another approach uses the fact that if U is a
unitary matrix, then

∑
i,j |Uij|2 |i⟩ ⟨j| is doubly stochastic, meaning that each row

and column is a probability distribution.

(c) Is F concave, convex or neither? Does this tell us anything about whether gT and
γT are global minima of F?
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(d) For any state ρ, interpret F (ρ) − F (γT ) as a relative entropy. Use this to derive
a robust version of (c), showing that even approximate minimizers of F are close
to γT . You may use without proof the quantum Pinsker inequality D(ρ∥σ) ≥
1
2
∥ρ− σ∥21; note that this formulation uses entropies defined with the natural log

(D(ρ∥σ) = tr ρ[ln(ρ) − ln(σ)]), and that the usual relative entropy has an extra
factor of 1

ln 2
on the RHS.

2. Compression with side information.

(a) Conditionally typical set. For a probability distribution pXY define Jn
p,δ to be the

jointly typical set: formally Jn
p,δ := T n

p,δ ∩ (T n
pX ,δ × T n

pY ,δ). Given yn, define the
conditionally typical set J(yn) := Jn

p,δ(y
n) by

J(yn) =
{
xn ∈ Xn : (xn, yn) ∈ Jn

p,δ

}
. (6)

Observe that if yn ̸∈ T n
pY ,δ then J(yn) is empty. If yn ∈ T n

pY ,δ then what bounds
can you place on pn(xn|yn) for xn ∈ J(yn)? Prove that

|J(yn)| ≤ exp(n(H(X|Y ) + 2δ)). (7)

(b) Let (Xn, Y n) ∼ pnXY , i.e. each (Xi, Yi) is drawn independently from pXY . Suppose
that Alice knows Xn and Y n, Bob holds Y n and Alice wishes to transmit Xn to
Bob. Shannon’s noiseless coding theorem tells her how to do this using ≈ nH(X)
bits, but this would not take advantage of the correlations between Xn and Y n.
Show that she can transmit Xn to Bob using n(H(X|Y ) + δ) bits and error ϵ,
with ϵ, δ → 0 as n → ∞. (Note: the δ in (a) might not be the same δ as the one
here.)

(c) Now suppose that Alice knows only Xn and Bob knows Y n. This is significantly
more challenging than the situation in (b). Suppose that Alice uses a random
codebook, as we will also see in Shannon’s noisy coding theorem. To compress
to rate R, Alice uses a random function E : Xn → [2nR] := {1, 2, . . . , 2nR},
meaning that each E(xn) is chosen independently and uniformly from [2nR]. As
in the channel coding theorem, E is chosen randomly and then fixed and can be
assumed to be known by both parties.

Given message m, Bob decodes by choosing the unique xn such that E(xn) = m
and (xn, Y n) ∈ J , i.e. in the set E−1(m) ∩ J(Y n). If this xn either doesn’t exist
or isn’t unique, then he declares failure. Let WRONG be the event where

E−1(m) ∩ J(Y n) (8)

contains a string xn that is not equal to the correct string Xn. Prove that
pn(WRONG) → 0 if R > H(X|Y ) + 3δ as n → ∞.
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(d) What other errors are possible? By bounding their probabilities show that the
coding strategy in (c) can work with error approaching 0 as n → ∞ for any
R > H(X|Y ).
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