
Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 6

Due: Tuesday, Oct 22, 2024 at 9pm
Turning in your solutions: Upload a single pdf file to gradescope.

1. Entanglement-assisted quantum capacity.

(a) Quantum capacity. Denote the entanglement-assisted capacity of a quantum chan-
nel for sending qubits (resp. cbits) by QE (resp. CE). Relate QE to CE using
teleportation and super-dense coding.

(b) Depolarizing channel. Let Dd
p (abbreviated D) denote the depolarizing channel

on d dimensions with depolarization probability p, defined as

Dd
p(ρ) = (1− p)ρ+ p

I

d
, (1)

for ρ a d-dimensional density matrix. Observe that D(UρU †) = UD(ρ)U † for any
unitary U . Use this property and the input concavity property of CE to show
that CE(Dd

p, ρ) is maximized for ρ = I/d. Calculate CE(Dd
p, I/d).

(c) Enhancement from entanglement. The classical capacity of the depolarizing
channel C(D) can be shown to be maximized by applying the HSW theorem to
the ensemble where each of the basis states |1⟩ , . . . , |d⟩ appears with probability

1/d. Calculate C(Dd
p). What is the ratio CE(D)

C(D)
in the limits p→ 0 and p→ 1 as

a function of d?

(d) [Optional:] Classical channels. The entanglement-assisted capacity theorem states
that CE(N ) = maxτ I(A : B)τ (see previous pset for definition of τ). Consider the
special case of a classical channel N (ρ) :=

∑
x,y ⟨x| ρ |x⟩N(y|x) |y⟩⟨y| and show

that CE(N ) = C(N). In other words, show that entanglement doesn’t increase
the capacity of classical channels, and that Shannon’s noisy coding theorem can
recovered as a special case of the entanglement-assisted capacity theorem.

This problem is not optional because it’s particularly hard, just because I want
to keep the pset length down.
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2. Chernoff bound and Pinsker inequality. In this problem you will derive the
quantum Pinsker inequality and explore some applications.

The Pinsker inequality is

D(ρ∥σ) ≥ 1

2 ln 2
∥ρ− σ∥21. (2)

An important special case is for classical distributions over bits, where the Pinsker
inequality implies

D

((
p+ ϵ

1− p− ϵ

)∥∥∥∥( p
1− p

))
≥ 2

ln 2
ϵ2. (3)

A related inequality is the Chernoff bound, which is a way of showing that sums of
many independent random variables are exponentially unlikely to be far from their
mean. One version of this bound states that if X1, . . . , Xn are i.i.d. random variables
such that Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p, then

Pr

(
1

n

n∑
i=1

Xi ≥ p+ ϵ

)
≤ e−2nϵ2 . (4)

Derivations of eq. (3) and eq. (4) (not needed for the rest of the problem) can be found
on wikipedia, and you may take these equations as given.

On an earlier pset, you showed how a Chernoff-like bound could be derived from
Pinsker’s inequality using the method of types. Here you will assume the Chernoff
bound and use this to prove Pinsker’s inequality.

(a) Prove eq. (2). There are two possible routes. One is to use eq. (4) and the
quantum Stein’s Lemma. Another is to use the monotonicity of relative entropy
and eq. (3). Pick one of these, or come up with another.

(b) The Pinsker inequality can be used to derive approximate versions of various
entropic conditions. Prove the following:

i. If S(ρ) ≤ ϵ then ρ is close in trace distance to a pure state, where “close”
means the distance goes to 0 as ϵ → 0. [Hint: let ρ =

∑
i λiψi for λ1 ≥ λ2 ≥

· · · and show D(ψ1∥ρ) ≤ S(ρ).]

ii. If I(A;B)ρ ≤ ϵ then ρAB ≈ ρA ⊗ ρB where again ≈ means close in trace
distance. [Hint: Pinsker!]

iii. For this last part, there is nothing to turn in. If |H(A|B)| ≤ ϵ then there is no
simple structural statement we can make (in the quantum case). Think about
why this is true. We will later see that I(A;B|C) ≤ ϵ implies a structural
property about quantum states but this is very far from obvious.
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