
Q. Inf. Science 3 (8.372 / 18.S996) — Fall 2022

Assignment 7

Due: Friday, Oct 28, 2022 at 5pm

1. Unital channels Let N be a completely positive (cp) map whose input and output both
are d-dimensional. We say N is unital if N (I) = I. Recall also that N is trace preserving
(tp) if tr[N (X)] = tr[X] for any X.

(a) Show that N is unital if and only if N † is trace preserving.

(b) A channel is mixed unitary if it can be written as N (X) =
∑m

i=1 piUiXU †
i with

p1, . . . , pm a probability distribution and U1, . . . , Um unitaries. Show that all mixed
unitary channels are unital.

Remark: Stochastic matrices have nonnegative entries and their columns each sum
to 1. These are the classical analogue of channels. Doubly-stochastic matrices also
have their rows summing to 1. The Birkhoff-von Neumann theorem states that
doubly-stochastic matrices are mixtures of permutations (which could be said to be
the classical analogue of unitary matries.) So one might guess that unital channels
are always mixtures of unitaries. This is true when d = 2 but false when d > 3; a
counter-example is the Werner-Holevo channel that we will discuss below.

(c) [Optional.] Prove that when d = 2 all unital channels are mixed unitary. As a
hint, first argue that if N has single qubit input and output then it has the form

N ( I+x⃗·σ⃗
2

) = I+(Ax⃗+b⃗)·σ⃗
2

for some matrix A and vector b⃗. We use the notation x⃗ · σ to
mean x1σ1 + x2σ2 + x3σ3 where σi are the Pauli matrices.

(d) Prove that a channel N is unital if and only if it is entropy non-decreasing, that is,
S(N (ρ)) ≥ S(ρ) for all ρ.

(e) Let H be a Hermitian matrix, T a positive real number, and σ := e−H/T/ tr
[
e−H/T

]
.

Suppose N (σ) = σ. For any ρ define its free energy to be

F (ρ) := tr[Hρ]− TS(ρ). (1)

Show that F (N (ρ)) ≤ F (ρ) for any ρ.

(f) [Optional.] If N is a unital channel then prove that the eigenvalues of N (ρ) are
majorized by those of ρ. (This means that α1 + · · · + αk ≤ β1 + · · · + βk for any k
where α1 ≥ α2 ≥ · · · ≥ αd are the sorted eigenvalues of N (ρ) and β1 ≥ β2 ≥ · · · βd

are the sorted eigenvalues of ρ.)
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2. Entanglement-assisted quantum capacity.

(a) Quantum capacity. Denote the entanglement-assisted capacity of a quantum chan-
nel for sending qubits (resp. cbits) by QE (resp. CE). Relate QE to CE using
teleportation and super-dense coding.

(b) Classical channels. The entanglement-assisted capacity theorem states that CE(N ) =
maxτ I(A : B)τ (see pset 6 for definition of τ). Consider the special case of a clas-
sical channel N (ρ) :=

∑
x,y ⟨x| ρ |x⟩N(y|x) |y⟩⟨y| and show that CE(N ) = C(N).

In other words, show that entanglement doesn’t increase the capacity of classical
channels, and that Shannon’s noisy coding theorem can recovered as a special case
of the entanglement-assisted capacity theorem.

(c) Depolarizing channel. Let Dd
p (abbreviated D) denote the depolarizing channel on d

dimensions with depolarization probability p, defined as

Dd
p(ρ) = (1− p)ρ+ p

I

d
, (2)

for ρ a d-dimensional density matrix. Observe that D(UρU †) = UD(ρ)U † for any
unitary U . Use this property and the input concavity property of CE to show that
CE(Dd

p, ρ) is maximized for ρ = I/d. Calculate CE(Dd
p, I/d).

(d) Enhancement from entanglement. The classical capacity of the depolarizing channel
C(D) can be shown to be maximized by applying the HSW theorem to the ensemble
where each of the basis states |1⟩ , . . . , |d⟩ appears with probability 1/d. Calculate

C(Dd
p). What is the ratio CE(D)

C(D)
in the limits p → 0 and p → 1 as a function of d?

3. Additivity violation of Smin
∞ with the Werner-Holevo channel. In this problem we

will see a simple version of the sort of additivity violation that is possible with entangled
inputs.

(a) First, we relate additivity violations of χ to those of a related quantity. For a channel
N , its minimum output entropy is defined to be

Smin(N ) := min
ρ

S(N (ρ)). (3)

Show that
Smin(N1 ⊗N2) ≤ Smin(N1) + Smin(N2) (4)

for any channels N1,N2. An additivity violation of Smin occurs when this inequality
is strict.

(b) Given a channel N that maps CdA to CdB , define a new channel N ′ with a d3B-
dimensional input and dB-dimensional output as follows. The input is interpreted
as a pair of registers: one with dimension d2B and another with dimension dB. The
channel measures the first register and obtains outcomes x, y ∈ [dB]. It then applies
N to the second register and finally σxy (i.e. the generalized Pauli matrix; see pset
6 for definition). Bob receives output σxyN (ρ)σ†

xy where ρ is contents of the second
register. This is seen in the following quantum circuit.
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|xy⟩

ρ N σxy σxyN (ρ)σ†
xy

Prove that
χ(N ′) = log(dB)− Smin(N ). (5)

In this way, we can relate properties of Smin, such as [non-]additivity, to properties
of χ.

As a reminder, here is the definition of χ. χ(N ′) is the maximum over all probability
distributions p = (p1, . . . , pm) and d3B-dimensional states σ1, . . . , σm of

S(
∑
i

piN ′(σi))−
∑
i

piS(N ′(σi)). (6)

(c) Demonstrating additivity violations for Smin is challenging.1 Instead we will study
a related quantity, called Smin

∞ . Define S∞(ρ) = − log ∥ρ∥ where ∥ρ∥ is the largest
singular value of ρ. (This is a special case of the Rényi entropy Sα(ρ) :=

1
1−α

log tr ρα.)
Define

Smin
∞ (N ) := min

ρ
S∞(N (ρ)) = − logmax

ρ
∥N (ρ)∥. (7)

Let N be the Werner-Holevo channel with d-dimensional inputs and outputs:

N (ρ) :=
I − ρT

d− 1
. (8)

Here I is the identity matrix and ρT denotes the transpose operation, i.e. ρTi,j = ρj,i.
At first it is not even obvious that this is a valid quantum channel. Prove that it
is a tpcp map by showing that the Choi-Jamiolkowski state (N ⊗ id)(Φ) is a valid
quantum state. Here Φ is the maximally entangled state. As a hint, recall that the
partial transpose of Φ is proportional to the swap operator.

For the rest of the pset, we use N to refer to this Werner-Holevo channel.

(d) Calculate Smin
∞ (N ). As a hint, show that the minimum is achieved on a pure input

state.

(e) Calculate S∞((N ⊗ N )(Φ)). Evaluate your expression when d = 3. How does this
quantity compare with 2Smin

∞ (N )? What can you conclude about the additivity of
Smin
∞ ?

1This was first achieved by Hastings and later simplified somewhat by Aubrun, Szarek and Werner. These
references are included for completeness but you do not need to look at them to solve the current problem.
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