
Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 7

Due: Tuesday, Oct 29, 2024 at 9pm
Turning in your solutions: Upload a single pdf file to gradescope.

1. The SWAP test

Given two quantum states, are they equal or far apart? One method to test this is
known as the “SWAP test”.

Let p denote the probability that this circuit outputs 0.

|0⟩ H H

ρ

σ

(a) Relate p to tr ρσ.

(b) Let us now explore how useful this is. Define T = 1
2
∥ρ − σ∥1. How are p and T

related when ρ and σ are pure states? Give an example of d-dimensional mixed
states ρ, σ where T ≤ 1/2 but p ≤ 1

2
+O

(
1
d

)
.

(c) While the SWAP test is not always an efficient way to estimate trace distance
(and it turns out the d-dependence here cannot be removed), it can be used to
estimate ∥ρ − σ∥22. Explain how to do this using O(1) copies of ρ and σ. Use
Cauchy-Schwarz to find the best constants b ≥ a > 0 such that

a∥ρ− σ∥2 ≤ ∥ρ− σ∥1 ≤ b∥ρ− σ∥2 (1)

(d) The purity of a density matrix is defined to be tr ρ2 and can also be estimated using
the SWAP test. Likewise we can estimate the entanglement of |ψ⟩AB. Explain
how the SWAP test can be applied to two copies of |ψ⟩ to estimate S2(ψA).

(e) In the above entanglement test, we use two copies of |ψ⟩; say that these live on
subsystems A1B1 and A2B2. However, we only apply the SWAP test to A1A2.
We could equivalently have applied it to B1B2. In each case we just discard the
remaining systems without looking at them. What happens if we apply a SWAP
test to both A1A2 and B1B2? Does that yield any more information beyond
measuring only A1A2?
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2. Tomography of pure states

Suppose we have n copies of an unknown pure state |ϕ⟩ ∈ Cd. Our goal is to measure
|ϕ⟩⊗n and output an estimate ϕ̂. The most general strategy here consists of choosing a
measurement operator Mϕ̂ ≥ 0 for each possible estimate ϕ̂. Since these have continu-
ous degrees of freedom the usual normalization condition now involves an integral:

Mfail +

∫
dϕ̂Mϕ̂ = Idn (2)

Here we also include the possibility of a “failure” outcome Mfail. We define the inte-
gration measure so that

∫
dϕ̂ 1 = 1. Equivalently we can write

∫
dϕ̂ = Eϕ̂, where the

expectation/integral is taken over all unit vectors.

(a) We will choose Mϕ̂ = cϕ̂⊗n for some constant c > 0, and Mfail = I −Π
(d,n)
sym . Show

that this yields a valid measurement for the right choice of c. What is c?

(b) Let F := F (ϕ, ϕ̂). Using this measurement, compute E[F 2k] for k a positive
integer.

(c) Average fidelity. How large does n need to be in order to achieve E[F ] ≥ 1− ϵ?

(d) Large-deviation bounds. Suppose we use an inadequate number of copies, say
n = d/10. Show that Pr[F ≥ 1/2] is exponentially small in d. As a hint, you
might apply Markov’s inequality to F 2k for k = d/10.

(More generally the constants 1/10 and 1/2 here are somewhat, but not com-
pletely, arbitrary.)

3. Relative entropy and the matrix multiplicative weight method.
In this problem we will see how quantum relative entropy can be a useful tool in classical
optimization algorithms that have applications in machine learning. For convenience,
take log to be base-e in this problem. Some formulas that may be helpful:

ln(A+B) = ln(A) +

∫ ∞

0

dz (A+ zI)−1B(A+B + zI)−1 (3)

d

dt
eA(t) =

∫ 1

0

ds esA
dA

dt
e(1−s)A (4)

(a) Variants of gradient descent. Consider the problem of minimizing a function
f : Rd → R. We will discuss three algorithms for this problem.

i. Proximal gradient descent. The idea of gradient descent is to start with a
point x0 and then in the tth step, move from xt in the direction of −∇f(xt),
i.e. −1 times the gradient of f evaluated at xt. At the same time, we don’t
want to move too far from xt. These goals (moving in the direction of −∇f
but not too far from xt) compete and we choose xt+1 according to

xt+1 = argmin
xt+1

η⟨xt+1 − xt,∇f(xt)⟩+
1

2
∥xt+1 − xt∥22, (5)
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for some parameter η > 0. Solve for xt+1 in terms of xt, η, and f . Does this
correspond to a step in the direction of −∇f?

ii. Mirror descent on probabilities. Let ∆d be the set of probability distributions
on d items, i.e. ∆d = {x ∈ Rd : ∀i x(i) ≥ 0,

∑d
i=1 x(i) = 1}. For probability

distributions it is more natural to use the relative entropy as a distance mea-
sure instead of the ℓ2 norm. Thus the mirror descent algorithm chooses xt+1

according to

xt+1 = argmin
xt+1

η⟨xt+1 − xt,∇f(xt)⟩+D(xt+1∥xt). (6)

(The terminology “mirror descent” comes from a generalization using some-
thing known as as “mirror map” which we will not use in this pset.) Solve
for xt+1 in terms of xt, η, and f . As a hint, the update rule you find is called
the “multiplicative weights” update rule.

iii. Mirror descent on density matrices. Now let Dd denote d×d density matrices
and define f : Dd 7→ R. Note that ∇f is now a matrix, and for matrices A,B,
we define ⟨A,B⟩ := tr

[
A†B

]
. Mirror descent here corresponds to the update

rule
ρt+1 = argmin

ρt+1

η⟨ρt+1 − ρt,∇f(ρt)⟩+D(ρt+1∥ρt). (7)

Solve for ρt+1 as a function of ρt, η and f , assuming for simplicity that ρt
is full rank. As a hint, you may find the solution of problem 2(c) on pset 3
helpful.

iv. Continuous-time matrix mirror descent. It is sometimes more convenient to
work with a continuous-time version of the map in eq. (7). Let ρ(t) be a
function of t and for t ≥ 0 let

ρ(t+dt) = arg min
ρ(t+dt)

η dt ⟨ρ(t+dt)−ρ(t),∇f(ρ(t))⟩+D(ρ(t+dt)∥ρ(t)). (8)

Write down a differential equation for ln ρ(t). [Hint: instead of solving eq. (8)
directly, guess the form of the answer by analogy with your answer from part
iii.]

(b) Convergence of matrix multiplicative weights. Let ρ∗ be an arbitrary density
matrix (which we will later take to be the minimizer of f).

i. Progress. Using the above differential equation show that

d

dt
D(ρ∗∥ρ(t)) = ⟨η∇f(ρ(t)), ρ∗ − ρ(t)⟩ (9)
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ii. Convexity. Suppose that f is convex. Prove that

f(σ1)− f(σ2) ≤ ⟨∇f(σ1), σ1 − σ2⟩, (10)

for any density matrices σ1, σ2.

iii. Convergence. Let ρ(0) = I/d and let ρ∗ = argmin f(ρ∗).
Show that D(ρ∗∥ρ(0)) ≤ log(d). How large should T be to guarantee that

f(ρ(T )) ≤ f(ρ∗) + ϵ? You may find it helpful to show that df(ρ(t))
dt

≤ 0, which
can be done either using the fact that ρ(t) optimizes eq. (8) or with direct
calculation.
Observe that relative entropy is used in the analysis but the final bound is
only in terms of f and the update rule you derived can also be expressed
without referencing the relative entropy. Your solution turns out to slightly
overstate the power of this algorithm since actual computers need to work in
discrete time and this introduces some additional difficulties. Still the mirror
descent algorithm is a very powerful tool because of its favorable dependence
on d.
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