
Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 8

Due: Tuesday, Nov 5, 2024 at 9pm
Turning in your solutions: Upload a single pdf file to gradescope.

1. Separable data hiding using Werner states. In class we argued that random
unitaries could yield data-hiding states. In this problem you will derive an explicit,
although less efficient, construction of data hiding.

For a bipartite state ρAB =
∑

ijkl(ρAB)ijkl |i⟩⟨j| ⊗ |k⟩⟨l| define the partial transpose

ρΓ := (id⊗T )(ρ) =
∑
ijkl

(ρAB)ijkl |i⟩⟨j| ⊗ |l⟩⟨k| (1)

We say that a state ρ is PPT if ρΓ ≥ 0.

Let F = SWAP act on Cd ⊗ Cd and define the projectors Π± = (I ± F )/2. These are
called the symmetric and antisymmetric projectors respectively. Define the Werner
state

Wλ := λ
Π+

d(d+ 1)/2
+ (1− λ)

Π−

d(d− 1)/2
(2)

(a) Separable Werner states. On an 8.371 pset you may have seen that Wλ

is PPT for λ ≥ 1/2, meaning that it is entangled for λ < 1/2. (If you haven’t
seen this before, then don’t worry.) Here you will argue that Wλ is separable for
λ ≥ 1/2. A state is “separable” if it is a convex combination of product states.

Prove this by giving explicit decompositions of Wλ into product states for all
λ ∈ [1/2, 1]. As a hint, try computing E[(U ⊗U)(α⊗ β)(U ⊗U)†] for pure states
α, β.

(b) Form of the optimal measurement. Suppose that we would like to distinguish
ρ0 := Wλ0 and ρ1 := Wλ1 . (Later we will take λ0, λ1 to be 0, 1 or 1/2, 1, but this
part will not depend on that.) Then we perform a a 2-outcome measurement
{M0,M1} and seek to maximize p0 := trM0ρ0 and p1 := trM1ρ1. This is a
two-objective optimization; rather than a single optimal value, there is a feasible
region of possible (p0, p1). Show that any feasible p0, p1 can be achieved byM0,M1

that are linear combinations of I and F . (Hint: Do not try to determine which
(p0, p1) are feasible.)

(c) Data hiding. For this part we will take λ0 = 0 and λ1 = 1. Define the bias of
the measurement to be

δ := trM0W0 + trM1W1 − 1. (3)

Show that δ ≤ O(1/d) for LOCC measurements but δ = 1 is possible for unre-
stricted measurements. Show also that δ = O(1/d) is achievable by measuring
both systems in the basis {|1⟩ , . . . , |d⟩} and checking whether the answers agree.
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(d) Composability. Now take λ0 = 1/2 and λ1 = 1. This way we are dealing
with entirely separable states. However, now W1/2 and W1 are not orthogonal, so
we cannot distinguish the states perfectly even with collective measurements. To
remedy this, let ρ0 = W⊗n

λ0
and ρ1 = W⊗n

λ1
so that F (ρ0, ρ1) decays exponentially

with n. Show that now any feasible p0, p1 can be acheived by M0,M1 that are
linear combinations of the 2n operators I ⊗ I ⊗ · · · ⊗ I, I ⊗ I ⊗ · · · ⊗ F , . . .
F ⊗ F ⊗ · · · ⊗ F .

2. Monogamy of entanglement Let Dd denote the set of d-dimensional density matri-
ces and define the separable states to be

Sep(dA, dB) = conv {α⊗ β : α ∈ DdA , β ∈ DdB} (4)

where convS denotes the convex hull of a set S, meaning

convS =

{∑
i

pixi : xi ∈ S, p a probability distribution

}
(5)

(a) The principle ofmonogamy of entanglement is that entanglement cannot be shared
without limit, unlike classical correlations. However, the larger the local dimen-
sion, the more systems can be simultaneously entangled. We will start with an
example of this phenomenon. Let

|ψ⟩A1,...,An
=

1√
n!

∑
π∈Sn

sgn(π) |π1⟩ ⊗ |π2⟩ ⊗ · · · |πn⟩ ∈ (Cn)⊗n. (6)

Here Sn is the symmetric group, meaning the set of n! permutations of n objects.
The sign of a permutation sgn(π) = (−1)m where m is the number of transposi-
tions (swaps of two elements) in any decomposition of π. Let ψA1A2 := trA3...An [ψ].
We will show that ψA1A2 is far from Sep(n, n). To show this, let M = (I − F )/2,
where F is the SWAP operator on Cn ⊗ Cn. Show that tr[MψA1A2 ] = 1 and
tr[Mσ] ≤ 1/2 for any σ ∈ Sep(n, n).

(b) Despite the above example, nontrivial statements about monogamy can be made
when the number of systems is only logarithmic in the local dimension. This
will follow from some information-theory tools that we now develop. Let I(A :
B|X)ρ = ϵ and suppose that X is classical while A,B are quantum. Show that

there exists a separable state σAB such that ∥ρAB − σAB∥1 ≤
√
ϵ2 ln(2). (Hint:

you should review problem 2(b) from pset 6.)

(c) Consider the state ρAB1...Bk , where A has dimension dA and each Bi has dimension
dB. Let {M, I−M} be a 1-LOCC measurement on two systems A and B, meaning
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that it can be written as a measurement on system B followed by a two-outcome
measurement on system A, i.e.

M =
m∑
y=1

Qy ⊗Ry, (7)

where each Ry ≥ 0,
∑m

y=1Ry = I and 0 ≤ Qy ≤ I. It turns out that most of the

ρABi are close to Sep when measured with M of this form. To see this, consider
the state σAY1...Yk where we measure each system Bi for i = 1, . . . , k using the
measurement {R1, . . . , Rm} and we record the answer in a classical system Yi.
Let Y<i := Y1Y2, . . . , Yi−1. Show that

k∑
i=1

I(A : Yi|Y<i)σ ≤ log(dA). (8)

(d) [Optional:] Given ρ and M as above, define hSep(M) = max{trMσ : σ ∈
Sep(dA, dB)}. Show that

E
i∈[k]

tr
[
MρABi

]
≤ hSep(M) +

√
2 ln(dA)

k
. (9)

This shows a nontrivial monogamy relation when the number of systems is only
logarithmic in the local dimension. On the other hand, it applies only to a re-
stricted family of measurements. Hint: you may want to relate I(A : Yi|Y<i) to
the states of ρ resulting from measuring some subsystems and conditioning on the
outcomes, while leaving other systems unmeasured or traced out.
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