Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 8

Due: Tuesday, Nov 5, 2024 at 9pm
Turning in your solutions: Upload a single pdf file to gradescope.

1. Separable data hiding using Werner states. In class we argued that random
unitaries could yield data-hiding states. In this problem you will derive an explicit,
although less efficient, construction of data hiding.

For a bipartite state pap = D ;5. (Pap)iju [1)J] @ [kX| define the partial transpose

pri=(d@T)(p) = Y _(pan)im [i)i] © [XK (1)

ijkl
We say that a state p is PPT if pt' > 0.

Let F' = SWAP act on C? @ C? and define the projectors I1y = (I 4+ F')/2. These are
called the symmetric and antisymmetric projectors respectively. Define the Werner

state
IT, 11

=gz ne T Vaaon e

(2)

(a) Separable Werner states. On an 8.371 pset you may have seen that W)
is PPT for A > 1/2, meaning that it is entangled for A < 1/2. (If you haven’t
seen this before, then don’t worry.) Here you will argue that W) is separable for
A > 1/2. A state is “separable” if it is a convex combination of product states.
Prove this by giving explicit decompositions of W) into product states for all
A € [1/2,1]. As a hint, try computing E[(U @ U)(a ® 8)(U ® U)1] for pure states
a, .

(b) Form of the optimal measurement. Suppose that we would like to distinguish
po = Wy, and p; := W,,. (Later we will take Ao, A; to be 0,1 or 1/2, 1, but this
part will not depend on that.) Then we perform a a 2-outcome measurement
{My, M;} and seek to maximize py := tr Mypo and p; := tr Myp;. This is a
two-objective optimization; rather than a single optimal value, there is a feasible
region of possible (pg, p1). Show that any feasible pg, p; can be achieved by My, M;
that are linear combinations of I and F. (Hint: Do not try to determine which

(po, p1) are feasible.)

(c) Data hiding. For this part we will take Ay = 0 and A; = 1. Define the bias of
the measurement to be

0 :=tr M()WO + tr M1W1 — 1. (3)

Show that ¢ < O(1/d) for LOCC measurements but 6 = 1 is possible for unre-
stricted measurements. Show also that § = O(1/d) is achievable by measuring
both systems in the basis {|1),...,|d)} and checking whether the answers agree.
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(d)

Composability. Now take \g = 1/2 and A\; = 1. This way we are dealing
with entirely separable states. However, now W, and W, are not orthogonal, so
we cannot distinguish the states perfectly even with collective measurements. To
remedy this, let py = Wﬁ" and p; = Wﬁ” so that F'(po, p1) decays exponentially
with n. Show that now any feasible pg, p; can be acheived by M, M; that are
linear combinations of the 2" operators I ® [ ® -+ - X[, IR I ® --- ® F,
FRF® - --®F.

2. Monogamy of entanglement Let D; denote the set of d-dimensional density matri-
ces and define the separable states to be

Sep(da,dp) =conv{a® B :a € Dy,,B € Dy, } (4)

where conv S denotes the convex hull of a set S, meaning

(a)

conv S = {szxz :x; € S, p a probability distribution} (5)

i

The principle of monogamy of entanglement is that entanglement cannot be shared
without limit, unlike classical correlations. However, the larger the local dimen-
sion, the more systems can be simultaneously entangled. We will start with an
example of this phenomenon. Let

V), n, Z sgn(m) 1) @ [ma) ® -+ - [my) € (CM)" (6)

WESn

Here S,, is the symmetric group, meaning the set of n! permutations of n objects.
The sign of a permutation sgn(m) = (—1)™ where m is the number of transposi-
tions (swaps of two elements) in any decomposition of 7. Let ¢4, 4, 1= tra,.. a,[¢].
We will show that 14, 4, is far from Sep(n,n). To show this, let M = (I — F)/2,
where F' is the SWAP operator on C" @ C". Show that tr[Ma,4,] = 1 and
tr[Mo] < 1/2 for any o € Sep(n,n).

Despite the above example, nontrivial statements about monogamy can be made
when the number of systems is only logarithmic in the local dimension. This
will follow from some information-theory tools that we now develop. Let I(A :
B|X), = € and suppose that X is classical while A, B are quantum. Show that
there exists a separable state o4p such that |[pap — oaplli < v/€2In(2). (Hint:
you should review problem 2(b) from pset 6.)

Consider the state pAP1Br where A has dimension d4 and each B; has dimension

dp. Let {M,I—M} be a 1-LOCC measurement on two systems A and B, meaning
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that it can be written as a measurement on system B followed by a two-outcome
measurement on system A, i.e.

M=) Q,®R, (7)

y=1

where each R, > 0, Z;nzl R, =1 and 0 < Q, < I. It turns out that most of the
pABi are close to Sep when measured with M of this form. To see this, consider
the state 0¥ Y% where we measure each system B; for i = 1,...,k using the
measurement {Ry,..., R} and we record the answer in a classical system Y;.

Let Y., :=Y1Ys,...,Y; 1. Show that

k

D I(A:YiVai) < log(da). (8)

=1

[Optional:] Given p and M as above, define hgep(M) = max{tr Mo : o €
Sep(da,dp)}. Show that

21
E tr[Mp"P] < hgep(M) + M.

9
ic[k] k (9)

This shows a nontrivial monogamy relation when the number of systems is only
logarithmic in the local dimension. On the other hand, it applies only to a re-
stricted family of measurements. Hint: you may want to relate I(A : Y;|Y;) to
the states of p resulting from measuring some subsystems and conditioning on the
outcomes, while leaving other systems unmeasured or traced out.



