Q. Inf. Science 3 (8.372 / 18.S996) — Fall 2022

 Assignment 8

 Assignment 8}

Due: Friday, Nov 4, 2022 at 5pm on gradescope.

1. PPT test and Werner states For a bipartite state $\rho_{A B}=\sum_{i j k l}\left(\rho_{A B}\right)_{i j k l}|i\rangle\langle j| \otimes|k\rangle\langle l|$ define the partial transpose

$$
\begin{equation*}
\rho^{\Gamma}:=(\operatorname{id} \otimes T)(\rho)=\sum_{i j k l}\left(\rho_{A B}\right)_{i j k l}|i\rangle\langle j| \otimes|l\rangle\langle k| \tag{1}
\end{equation*}
$$

We say that ρ is PPT if it has Positive [semi-definite] Partial Transpose, i.e. if $\rho^{\Gamma} \geq 0$. We saw in lecture that all separable states are PPT.
(a) The transpose is a basis-dependent operation. However, show that the set PPT is invariant under local unitaries, i.e. if $\rho \in \mathrm{PPT}$ then $(U \otimes V) \rho(U \otimes V)^{\dagger} \in \mathrm{PPT}$ as well. (You will not need it here but your proof should work even if U, V are not unitary.)
(b) Let F denote the SWAP operator, i.e. $F=\sum_{i, j}|i, j\rangle\langle j, i|$. Define the projectors $\Pi_{ \pm}=(I \pm F) / 2$ on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. These are called the symmetric and antisymmetric projectors respectively. Verify that $\operatorname{tr} \Pi_{ \pm}=d(d \pm 1) / 2$. Define the Werner state

$$
\begin{equation*}
W_{\lambda}:=\lambda \frac{\Pi_{+}}{d(d+1) / 2}+(1-\lambda) \frac{\Pi_{-}}{d(d-1) / 2} \tag{2}
\end{equation*}
$$

Calculate F^{Γ} and W_{λ}^{Γ}. For which values of λ is $W_{\lambda} \in \operatorname{PPT}$?
(c) We say a channel $\mathcal{N}_{A^{\prime} \rightarrow B}$ is PPT if its Jamiolkowski state $\omega(\mathcal{N})$ is in PPT. For what values of p, d is the depolarizing channel $\mathcal{D}_{p}^{d}(\rho)=(1-p) \rho+p \frac{I}{d}$ PPT?
(d) Show that if ρ is a PPT state and $\left|\Phi_{d}\right\rangle=d^{-1 / 2} \sum_{i=1}^{d}|i\rangle \otimes|i\rangle$ then $\operatorname{tr}\left[\Phi_{d} \rho\right] \leq 1 / d$. Along the way you may find it helpful to show that $\operatorname{tr}\left[A^{\Gamma} B^{\Gamma}\right]=\operatorname{tr}[A B]$. Recall also the bound $\operatorname{tr}[A B] \leq\|A\|_{1}\|B\|_{\infty}$.
(e) Consider now the problem of distinguishing the Werner states W_{0} and W_{1} using LOCC (local operations and classical communication). The measurement consists of operators $\left\{M_{0}, M_{1}\right\}$ such that $0 \leq M_{0}, 0 \leq M_{1}$ and $M_{0}+M_{1}=I$. It turns out that if $\left\{M_{0}, M_{1}\right\}$ can be implemented using LOCC then it should additionally satisfy $M_{0}^{\Gamma} \geq 0$ and $M_{1}^{\Gamma} \geq 0$.
We can further restrict the form of M_{0}, M_{1} using symmetry. Show that F commutes with $U \otimes U$ for all $U \in \mathcal{U}(d)$ and therefore that W_{λ} does as well. It turns out that this allows us to show that M_{0}, M_{1} are (without loss of generality) linear combinations of I and F, i.e.

$$
\begin{equation*}
M_{0}=a I+b F \quad \text { and } \quad M_{1}=(1-a) I-b F \tag{3}
\end{equation*}
$$

for $a, b \in \mathbb{R}$. (Both "it turns out" facts in this problem are non-trivial but will be discussed in lecture.) Define the bias of the measurement to be

$$
\begin{equation*}
\delta:=\operatorname{tr} M_{0} W_{0}+\operatorname{tr} M_{1} W_{1}-1 \tag{4}
\end{equation*}
$$

(If the probability of guessing the state correctly is p then $\delta=2 p-1$.)
Show that $\delta \leq O(1 / d)$ for LOCC measurements but $\delta=1$ is possible for unrestricted measurements. Along the way you should give conditions for which values of a, b yield valid measurements (i.e. satisfy $M_{0} \geq 0$ and $M_{1} \geq 0$) as well as satisfying the additional LOCC condition: $M_{0}^{\Gamma} \geq 0$ and $M_{1}^{\Gamma} \geq 0$. Show also that $\delta=O(1 / d)$ is achievable by measuring both systems in the basis $\{|1\rangle, \ldots,|d\rangle\}$ and checking whether the answers agree.
As a result we call the Werner states data hiding states since they can be used to hide a bit in a way that is concealed from LOCC measurements but accessible to general measurements.

