
Q. Inf. Science 3 (8.372 / 18.S996) — Fall 2022

Assignment 9

Due: Friday, Dec 2, 2022 at 5pm on gradescope.

1. Entanglement distillation with CSS codes

(a) First we consider the problem of information reconciliation. Suppose that Alice has
a string x ∈ Zn

2 and Bob has a string y such that x is uniformly distributed on Zn
2

and each yi is equal to xi with probability 1−p and equal to xi+1 with probability p.
In other words y = x+ e where each ei is an independent Bernoulli random variable
with expectation p. This is the output we would get from sending x through n uses
of a binary symmetric channel.

The goal of information reconciliation is to exchange messages such that Alice and
Bob end with shared strings x′, y′ that are equal to each other with high probability
and are secret to any eavesdropper. To this end, suppose that Alice chooses a
random matrix A ∈ Zk×n

2 for some k < n, subject to the constraint that the k rows
are linearly independent. Then she sends A and Ax to Bob through a public channel.
Show that conditioned on A and Ax, Alice’s state has n− k bits of entropy. (Hint:
it should be uniformly distributed over a dimension-n− k affine subspace of Zn

2 . An
affine space is a set of the form x0 + S = {x0 + x : x ∈ S} where S is a linear
subspace of Zn

2 .) Next show that if k = nR for some R > H2(p) then Bob can use
this message to determine the exact value of e with high probability. Explain how
this gives rise to a secrecy distillation protocol that can extract secret bits at rate
asymptotically equal to 1−H2(p).

(b) Now we turn to entanglement. Suppose that Alice generates n copies of |Φ2⟩ and
sends half of each copy through the channel NX , defined as

NX(ρ) = (1− p)ρ+ pXρX. (1)

Thus Alice and Bob share ρ⊗n where ρ = (id⊗NX)(Φ2). As in the classical case,
Alice generates a random matrix A ∈ Zk×n

2 (uniformly random subject to the con-
straint that rows are linearly independent) and sends this to Bob through a classical
channel. For each row Ai = (Ai,1, . . . , Ai,n) Alice measures the observable

ZAi := Z
Ai,1

1 Z
Ai,2

2 · · ·ZAi,n
n (2)

obtaining outcome (−1)si for si ∈ {0, 1}. She also sends the outcomes s1, . . . , sk to
Bob. Then Bob also measures ZA1 , . . . , ZAk . Again assume k = nR for R > H2(p).
Show that the post-measurement state is close to a pure state of the form

(I ⊗Xe) |S⟩ := 1√
|S|

∑
x∈S

|x, x+ e⟩ (3)

where S is a subspace of Zn
2 . How many copies of |Φ2⟩ can (I⊗Xe) |S⟩ be converted

into using local unitaries?

1

https://www.gradescope.com/courses/441759/assignments/2461728
https://en.wikipedia.org/wiki/Affine_space


8.372 / 18.S996— Fall 2022 Assignment 9

(c) Now suppose that each of n copies of |Φ2⟩ are sent first throughNX and then through
NZ , defined as

NZ(ρ) = (1− p)ρ+ pZρZ. (4)

Thus Alice and Bob share ρ⊗n where ρ = (id⊗NZ ◦ NX)(Φ2). The combination
NZ ◦ NX is not exactly the same as the depolarizing channel since it results in
X with probability p, Z with probability p and Y with probability p2 but it is a
reasonable proxy for the depolarizing channel.

The entanglement distillation protocol from (b) is now modified as follows. First
Alice follows the same steps as in (b). Then she chooses another random matrix B ∈
Zk×n

2 that is uniformly distributed subject to its rows being linearly independent and
the constraints ABT = 0. Now for each i = 1, . . . , k Alice measures XBi , obtaining
outcomes (−1)t1 , . . . , (−1)tk . She transmits B and t to Bob. Then Bob also measures
ZA1 , . . . , ZAk and XB1 , . . . , XBk . Again we assume k = nR for R > H2(p). Show
that the post-measurement state is close to a pure state of the form (I ⊗ ZfXe) |S⟩
where e, f ∈ Zn

2 and |S⟩ is defined as in (3).

(d) Calculate Ic = S(B)− S(E) for the states from (b) and (c), i.e. (id⊗NX)(Φ2) and
(id⊗NZ ◦NX)(Φ2). How does this compare with the entanglement distillation rates
achieved by the above protocols?

2. Chernoff bound and Pinsker inequality. In this problem you will derive the quantum
Pinsker inequality and explore some applications.

The Pinsker inequality is

D(ρ∥σ) ≥ 1

2 ln 2
∥ρ− σ∥21. (5)

An important special case is for classical distributions over bits, where the Pinsker in-
equality implies

D

((
p+ ϵ

1− p− ϵ

)∥∥∥∥( p
1− p

))
≥ 2

ln 2
ϵ2. (6)

As you saw on an earlier pset, the Pinsker inequality can also be related to the Chernoff
bound, which is a way of showing that sums of many independent random variables are
exponentially unlikely to be far from their mean. One version of this bound states that if
X1, . . . , Xn are i.i.d. random variables such that Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p,
then

Pr

(
1

n

n∑
i=1

Xi ≥ p+ ϵ

)
≤ e−2nϵ2 . (7)

Derivations of (6) and (7) (not needed for the rest of the problem) can be found on
wikipedia, and you may take these equations as given.

(a) [Optional:] Prove (5). There are two possible routes. One is to use (7) and the
quantum Stein’s Lemma. Another is to use the monotonicity of relative entropy and
(6). Pick one of these, or come up with another.

(b) The Pinsker inequality can be used to derive approximate versions of various entropic
conditions. Prove the following:
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i. If S(ρ) ≤ ϵ then ρ is close in trace distance to a pure state, where “close” means
the distance goes to 0 as ϵ → 0. [Hint: let ρ =

∑
i λiψi for λ1 ≥ λ2 ≥ · · · and

show D(ψ1∥ρ) ≤ S(ρ).]

ii. If I(A;B)ρ ≤ ϵ then ρAB ≈ ρA⊗ρB where again ≈ means close in trace distance.
[Hint: show I(A;B) = D(ρAB∥ρA ⊗ ρB).]

iii. For this last part, there is nothing to turn in. If |H(A|B)| ≤ ϵ then there is no
simple structural statement we can make (in the quantum case). Think about
why this is true. We will later see that I(A;B|C) ≤ ϵ implies a structural
property about quantum states but this is very far from obvious.

3. Monogamy of entanglement

(a) The principle of monogamy of entanglement is that entanglement cannot be shared
without limit, unlike classical correlations. However, the larger the local dimension,
the more systems can be be simultaneously entangled. We will start with an example
of this phenomenon. Let

|ψ⟩A1,...,An
=

1√
n!

∑
π∈Sn

sgn(π) |π1⟩ ⊗ |π2⟩ ⊗ · · · |πn⟩ ∈ (Cn)⊗n. (8)

Here Sn is the symmetric group, meaning the set of n! permutations of n objects.
The sign of a permutation sgn(π) = (−1)m where m is the number of transpositions
(swaps of two elements) in any decomposition of π. Let ψA1A2 := trA3...An [ψ]. We
will show that ψA1A2 is far from Sep(n, n). To show this, let M = (I − F )/2, where
F is the SWAP operator on Cn ⊗Cn. Show that tr[MψA1A2 ] = 1 and tr[Mσ] ≤ 1/2
for any σ ∈ Sep(n, n).

(b) Despite the above example, nontrivial statements about monogamy can be made
when the number of systems is only logarithmic in the local dimension. This will
follow from some information-theory tools that we now develop. Let I(A : B|X)ρ = ϵ
and suppose that X is classical while A,B are quantum. Show that there exists a
separable state σAB such that 1

2
∥ρAB−σAB∥1 ≤

√
ϵ2 ln(2). (Hint: you should review

problem 2(b) from this pset.)

(c) Consider the state ρAB1...Bk , where A has dimension dA and each Bi has dimension
dB. Let {M, I −M} be a 1-LOCC measurement on two systems A and B, meaning
that it can be written as a measurement on system B followed by a two-outcome
measurement on system A, i.e.

M =
m∑
y=1

Qy ⊗Ry, (9)

where each Ry ≥ 0,
∑m

y=1Ry = I and 0 ≤ Qy ≤ I. It turns out that most of

the ρABi are close to Sep when measured with M of this form. To see this, con-
sider the state σAY1...Yk where we measure each system Bi for i = 1, . . . , k using the
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measurement {R1, . . . , Rm} and we record the answer in a classical system Yi. Let
Y<i := Y1Y2, . . . , Yi−1. Show that

k∑
i=1

I(A : Yi|Y<i)σ ≤ log(dA). (10)

(d) [Optional:] Given ρ andM as above, define hSep(M) = max{trMσ : σ ∈ Sep(dA, dB)}.
Show that

E
i∈[k]

tr
[
MρABi

]
≤ hSep(M) +

√
2 ln(dA)

k
. (11)

This shows a nontrivial monogamy relation when the number of systems is only
logarithmic in the local dimension. On the other hand, it applies only to a restricted
family of measurements. Hint: you may want to relate I(A : Yi|Y<i) to the states
of ρ resulting from measuring some subsystems and conditioning on the outcomes,
while leaving other systems unmeasured or traced out.

4. Data hiding, continued

(a) Separable Werner states. As in the last pset, define the symmetric/antisymmetric
projectors Π± = (I ± F )/2 on Cd ⊗ Cd (with F = SWAP) and the Werner state

Wλ := λ
Π+

d(d+ 1)/2
+ (1− λ)

Π−

d(d− 1)/2
(12)

Previously we saw that Wλ is PPT for λ ≥ 1/2, meaning that it is entangled for
λ < 1/2. However, we need an additional argument to show that Wλ is separable
for λ ≥ 1/2. Prove this by giving explicit decompositions of Wλ into product states
for all λ ∈ [1/2, 1]. As a hint, try computing E[(U ⊗ U)(α ⊗ β)(U ⊗ U)†] for pure
states α, β.

(b) Form of the optimal measurement. Suppose that we would like to distinguish
ρ0 := Wλ0 and ρ1 := Wλ1 . (These λ0, λ1 could be 0, 1 as in the last pset, or 1/2, 1
if we want to consider the problem of distinguishing separable states.) Then we
perform a a 2-outcome measurement {M0,M1} and seek to maximize p0 := trM0ρ0
and p1 := trM1ρ1. This is a two-objective optimization; rather than a single optimal
value, there is a feasible region of possible (p0, p1). Show that any feasible p0, p1 can
be achieved by M0,M1 that are linear combinations of I and F . (Hint: Do not try
to determine which (p0, p1) are feasible.)

(c) Composability. In the last part, if λ0, λ1 are not 0, 1—say if we choose them to be
1/2, 1—then ρ0, ρ1 are not orthogonal, so we cannot distinguish the states perfectly
even with collective measurements. To remedy this, let ρ0 = W⊗n

λ0
and ρ1 = W⊗n

λ1
so

that F (ρ0, ρ1) decays exponentially with n. Show that now any feasible p0, p1 can be
acheived by M0,M1 that are linear combinations of the 2n operators I ⊗ I ⊗ · · · ⊗ I,
I ⊗ I ⊗ · · · ⊗ F , . . . F ⊗ F ⊗ · · · ⊗ F .
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