Q. Inf. Science 3 (8.372) — Fall 2024

Assignment 9

Due: Tuesday, Nov 19, 2024 at 9pm

Turning in your solutions: Upload a single pdf file to gradescope.

1. Random states

- (a) Consider a collection of unit vectors $|v_1\rangle, \ldots, |v_n\rangle \in \mathbb{C}^d$. Everyone knows that if the vectors are orthogonal then we must have $n \leq d$. Suppose instead we have $\langle v_i | v_j \rangle = \alpha$ for each $i \neq j$ where α is a fixed real number in the interval (0, 1). Show that we again must have $n \leq d$. As a hint, the Gram matrix has entries $G_{i,j} = \langle v_i | v_j \rangle$; consider its rank.
- (b) Choose unit vectors $|v\rangle, |w\rangle \in \mathbb{C}^d$ uniformly at random. Show that

$$\Pr\left[\left|\langle v|w\rangle\right|^2 \ge \frac{1}{2}\right] \le c^{-d} \tag{1}$$

for some constant c > 1. As a hint, consider higher moments of $|\langle v|w\rangle|^2$. (Note that the choice of 1/2 here was arbitrary, and the same result holds for any number between 0 and 1.)

- (c) Show that one can construct unit vectors $|v_1\rangle, \ldots, |v_n\rangle \in \mathbb{C}^d$ with $n \ge \exp(\Omega(d))$ and $|\langle v_i | v_j \rangle|^2 \le 1/2$ for each $i \ne j$.
- (d) Explain how to use the construction in the previous part for equality testing. In this problem, Alice and Bob each receive inputs $x, y \in [n]$, and each send $\log d$ qubits to Charlie, who has to guess whether x = y or $x \neq y$. If x = y then Charlie should output EQUAL with probability c, while if $x \neq y$ Charlie should output EQUAL with probability s, and we should have $c s \geq \Omega(1)$.
- (e) [Optional and way too hard for the pset.] Construct rank-d/2 dimensional projectors Π₁,..., Π_n in C^d with tr Π_iΠ_j ≤ ²/₃d and n ≥ exp(Ω(d²)).
 [Hint: If you want a spoiler, look at Lemma III.5 of quant-ph/0407049.]

2. Spectrum estimation

In Schur-Weyl duality, we decompose

$$\mathbb{C}^d \cong \bigoplus_{\lambda \in \operatorname{Par}(n,d)} \mathcal{Q}_\lambda \otimes \mathcal{P}_\lambda.$$
⁽²⁾

Let the corresponding projectors be Π_{λ} , and let the unitary performing this change of basis be U_{SW} . It turns out that

$$U_{\rm SW}\rho^{\otimes n}U_{\rm SW}^{\dagger} = \sum_{\lambda \in {\rm Par}(n,d)} |\lambda\rangle\langle\lambda| \otimes q_{\lambda}(\rho) \otimes I_{\mathcal{P}_{\lambda}}$$
(3)

so that

$$\operatorname{tr}\left[\Pi_{\lambda}\rho^{\otimes n}\right] = \operatorname{tr}\left[q_{\lambda}(\rho)\right] \dim \mathcal{P}_{\lambda} \tag{4}$$

Here q_{λ} is the representation matrix for the group U(d) acting on the irrep \mathcal{Q}_{λ} . We can extend it to act on non-unitary matrices (like ρ) by treating it as a polynomial in the entries of ρ . You will not need to carry this out but can rely on the characterization of q_{λ} below in (10).

Let the sorted eigenvalues of ρ be denoted $r = (r_1, \ldots, r_d)$. So $r_1 \ge r_2 \ge \cdots r_d \ge 0$. Let $\overline{\lambda} := \lambda/n$. In this problem we will prove that

$$\operatorname{tr}\left[\Pi_{\lambda}\rho^{\otimes n}\right] \leq n^{O(d^2)} \exp\left(-nD(\bar{\lambda}\|r)\right),\tag{5}$$

implying that measuring Π_{λ} is an effective way of estimating the spectrum of ρ .

(a) Prove that

$$\dim \mathcal{P}_{\lambda} \le \binom{n}{\lambda} := \frac{n!}{\lambda_1! \cdots \lambda_d!}.$$
(6)

Using problem 2 from pset 2, relate this to $\exp(nH(\lambda))$.

As a hint, the basis elements of \mathcal{P}_{λ} are labeled by the Standard Young Tableaux (SYT) meaning ways of filling λ with the numbers $1, \ldots, n$ with the numbers strictly increasing from left to right and from top to bottom. For example, the SYT of shape $\lambda = (4, 2)$ are

(b) In this part you will prove that

$$\operatorname{tr}[q_{\lambda}(\rho)] \le n^{O(d^2)} r^{\lambda} \quad \text{where} \quad r^{\lambda} := r_1^{\lambda_1} \cdots r_d^{\lambda_d} \tag{9}$$

Here you will need to use the fact that

$$\operatorname{tr}[q_{\lambda}(\rho)] = \sum_{\mu \text{ a SSYT of shape } \lambda} r^{w(\mu)}$$
(10)

A SSYT (semistandard Young tableau) of shape λ is a way of filling λ with the numbers $1, \ldots, d$ such that the numbers are strictly increasing from top to bottom and weakly increasing (i.e. nondecreasing) from left to right. So the SSYT of shape $\lambda = (2, 1)$ with d = 3 are

The "weight" of μ is denoted $w(\mu)$ and is the unnormalized type, meaning the vector of frequencies of each letter. So $w(\frac{1}{2}) = (2, 1, 0)$ (assuming d = 3) and

$$\operatorname{tr}\left[q_{(2,1)}(\rho)\right] = r_1^2 r_2 + r_1 r_2^2 + 2r_1 r_2 r_3 + r_1 r_3^2 + r_2^2 r_3 + r_2 r_3^2 \tag{12}$$

- i. Prove that the number of SSYT of shape λ are $\leq n^{O(d^2)}$. As a hint, just consider one row at a time.
- ii. Let w be the weight of a SSYT μ of shape λ . Prove that $w_1 + \cdots + w_k \leq \lambda_1 + \cdots + \lambda_k$ for each $k = 1, \ldots, d$. When this happens we can also write $w \leq \lambda$ and say that w is "majorized by" λ . As a hint, what is the lowest row that the number k can appear in?
- iii. Prove (9).