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8.372 Quantum Information Science III Fall 2024

Lecture 1: September 5, 2024

Scribe: David D. Dai Bit commitment and purifications

1.1 Class Introduction

Topics

1. Quantum information theory and its mathematical foundations

2. Basic tools: norms, randomness, quantum entropies, and symmetry (group representations)

3. Applications: cryptography, many-body physics, optimization, and complexity / algorithms

Websites

1. Canvas: shell linking to everything else, email announcements

2. Piazza: discussion, questions (threaded conversations)

3. Gradescope: submit homework

4. Gitlab: lecture notes, homework problems

5. Overleaf: scribing

1.2 Information-Theoretically Secure Quantum Cryptography

Information-theoretically secure cryptography is secure against an adversary with infinite compu-
tational resources and time. This is stronger than security based on computational assumptions,
such as RSA, which is based on the hardness of factoring. Some primitives that we might want to
perform are:

1. Quantum key distribution: Alice and Bob want to share a secure random key and prevent
eavesdropper Eve from learning the key. The goal is for Alice and Bob to finish the protocol
with an identical key that Eve knows nothing about, or to abort.

2. Coin flipping: Alice and Bob are remote and need to simulate a fair coin flip. Letting the
probability that the coin is 1 be p, there are two cases:

• Strong: p ∈
[
1
2 − ϵ,

1
2 + ϵ

]
for some small ϵ no matter what. Alice and Bob cannot bias

the coin in either direction.

• Weak: Alice can bias p ∈
[
1
2 − ϵ, 1

]
and Bob can bias p ∈

[
0, 12 + ϵ

]
. This is useful if

Alice prefers 0 and Bob prefers 1. For example, most people prefer to serve first in a
sports match.

3. Oblivious transfer: Alice has a database (x0, x1, x2, . . .), and Bob wants to access a specific
value xi. Bob doesn’t want to reveal i to Alice, and Alice doesn’t want to reveal the other
values in the database to Bob.



Lecture 1: September 5, 2024 1-2

4. Bit commitment: Alice writes a message, seals it in an envelope, and hands it to Bob (com-
mit phase). Bob cannot read the message by himself (hiding property). Later, Alice can
send instructions to Bob to reveal her earlier message (reveal phase). However, she cannot
change the message after having committed it earlier (binding property). After the protocol
concludes, Bob either learns the message (valid property) if nobody cheated, or he rejects.

Aside from quantum key distribution, all of these primitives have a similar trust model in which
both parties are potentially honest or potentially adversarial. This situation is known as “two-party
cryptography”. Not all of these primitives are independent: oblivious transfer > bit commitment
> strong coin flip > weak coin flip. Only weak coin flip and quantum key distribution are possible.

1.3 State Purification

The set of density matrices for a d-dimensional quantum system is:

Dd = {ρ ∈ Cd×d : ρ ≥ 0,Tr ρ = 1}, (1.1)

where ρ ≥ 0 means that ρ is positive semidefinite. Density matrices can be interpreted as a random
ensemble of pure states, or as the marginal resulting from looking only at a small subsystem of a
larger global pure state. In the marginal case, ρA = TrB(|ψAB⟩⟨ψAB|), where |ψAB⟩ is the global
pure state, ρA is the density matrix for subsystem A, and TrB is the partial trace over the rest of
the composite system.

We are interested in the inverse problem: given some fixed ρA, what is the set of all |ψAB⟩
for which ρA is the reduced density matrix for subsystem A? Let dA (dB) be the dimension of
subsystem A (B). Then the global pure states are:

|ψAB⟩ =
∑
ij

Cij |i⟩ ⊗ |j⟩ ,
∑
ij

|Cij |2 = 1. (1.2)

The corresponding density matrix for subsystem A is:

ρA = TrB(|ψAB⟩⟨ψAB|) (1.3)

=
∑
k

I ⊗ ⟨k|
∑
ij

Cij |i⟩ ⊗ |j⟩
∑
i′j′

Ci′j′ ⟨i′| ⊗ ⟨j′| I ⊗ |k⟩ (1.4)

=
∑
ii′

[
CC†

]
ii′

∣∣i〉〈i′∣∣ . (1.5)

= CC† (1.6)

For all C, we can perform an SVD:

C = UDV † → ρA = CC† = UD2U †. (1.7)

Except for the requirement that it be an isometry, V is unconstrained. D2 is fixed because it
corresponds to ρA’s eigenvectors. U is also fixed up to rotations within eigenspaces, i.e. U → UR
for unitary R such that RD = DR. Because R can be commuted through D as (UR)DV † =
UDRV † = UD(V R†)†, the freedom in U can be folded into the freedom in V .

Therefore, the set of all purifications of ρA is:

{ψAB = UDV † : V †V = I}. (1.8)
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where D and U are fixed by the eigen-decomposition ρA = UD2U †. The dimensions are:

dimU = dA × r, (1.9)

dimD = r × r, (1.10)

dimV = dB × r, (1.11)

where r is the number of nonzero eigenvalues of ρA. For some V1 with dimV1 = dB1 × r and V2
with dimV2 = dB2 ×r, we can always find either an isometryW such that V2 =WV1 or V1 =WV2.
To prove this, take dB2 ≥ dB1 WLOG. We can always complete the basis using Gram-Schmidt
to create a dB1 × dB1 unitary Ṽ1 which has V1 as its first r columns. Additionally, use Gram-
Schmidt to create dB2 × dB1 isometry Ṽ2 that agrees with V2 in its first r columns. Then the

isometry between V1 and V2 is W = Ṽ2Ṽ
†
1 . W clearly maps V1 to V2, and it is an isometry because

W †W = (Ṽ2Ṽ
†
1 )
†(Ṽ2Ṽ

†
1 ) = Ṽ1Ṽ

†
2 Ṽ2Ṽ

†
1 = I.

We can also see that an isometry performed on subsystem B does not change ρA. In gen-
eral, we have:

U ⊗ V |ψAB⟩ =
∑
ij

Cij U |i⟩ ⊗ V |j⟩ ,

=
∑
ii′jj′

Ui′iCijVj′j |i′⟩ ⊗ |j′⟩ ,

=
∑
ij

[
UCV T

]
ij
|i⟩ ⊗ |j⟩ .

(1.12)

Since
(
CV T

) (
CV T

)†
= C

(
V †V

)∗
C† = CC†, I ⊗ V |ψAB⟩ and |ψAB⟩ are purifications of the same

ρA.

Putting the two directions together, we have the theorem: |ψAB⟩ and |γAB′⟩ purify the same
density matrix ρA if and only if there exists some isometryW on the auxiliary spaces B and B′ such
that IA ⊗W |ψAB⟩ = |γAB′⟩ or IA ⊗W |γAB′⟩ = |ψAB⟩. The backward direction is very intuitive.
Imagine that subsystem A is held by Alice on Earth, and subsystem B is held by Bob on Mars. By
causality, an action that Bob takes alone is undetectable by Alice, i.e. cannot affect Alice’s density
matrix.

1.4 Proof that (Perfect) Bit Commitment is Impossible

There are three pictures of quantum operations: trace-preserving completely positive maps, Kraus
operators, and isometries followed by partial traces. All are equivalent, and we use “isometry1

followed by partial trace” here for convenience. We can actually ignore the partial trace: there
is no difference between irreversibly throwing away the environment and merely not looking at it
again. Ignoring the partial trace also allows for the possibility that a dishonest player may keep
the environment and analyze it to gain an advantage instead of discarding it as instructed.

1An isometry V is a linear map from CdA to CdB for dB ≥ dA such that V †V = IdA . It is norm-preserving.
Namely ∥|ψ⟩∥ = ∥V |ψ⟩∥, for any |ψ⟩ ∈ CdA . One important fact is that V V † = IB iff dA = dB . A preliminary
example of an isometry is to add a qubit state: V : |ψ⟩ 7→ |ψ⟩ ⊗ |0⟩.
Moreoever, for a finite system (which is always what we consider), one can always extend the isometry V to an
unitary U : CdB → CdB such that U |v⟩ = W |v⟩ for any v in the domain of V . Then in such a case a quantum
channel can be written as E(ρ) = TrE(V ρV

†) = TrE [U(ρ⊗ |⃗0⟩ ⟨⃗0|E)U
†], where we have labeled the initial state of the

environment before the action of the quantum channel as |⃗0⟩E .



Then after the commit phase, Alice and Bob share the global pure state |ψ(b)
AB⟩ out of the

two choices {|ψ⟩(0)AB , |ψ⟩
(1)
AB} for a committed (fixed) bit b. Because the protocol needs the hiding

property, we have equation2 ψ
(0)
B = ψ

(1)
B . Then by the above theorem, there exists some unitary U

in Alice’s Hilbert space such that U ⊗ IB |ψ(0)
AB⟩ = |ψ

(1)
AB⟩, which is not binding at all. Therefore,

exact bit commitment is impossible.

2In this class we use the convention that a single Greek letter ψ := |ψ⟩ ⟨ψ| for a pure state |ψ⟩, and ψB means we
take the partial trace over the complement of subsystem B.

1-4
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8.372 Quantum Information Science III Fall 2024

Lecture 2: September 10, 2024

Scribe: David D. Dai and Yeongwoo Hwang Trace distance, fidelity, metrics

2.1 Norms

2.1.1 General Properties

Norms measure “how big” an object is. They have three properties:

1. ∥cx∥ = |c| · ∥x∥ ∀c ∈ C (homogeneous)

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

3. ∥x∥ = 0↔ x = 0, where 0 is the additive identity (separating)

If an operation satisfies the first two properties but not the third separating property, it is called a
seminorm. A space equipped with a valid metric is a metric space.

2.1.2 Vector Norms

An important class of norms on vectors Cd are the Lp norms:

∥x∥p =

(
d∑
i=1

|xi|p
) 1

p

. (2.13)

There are a few important special cases. The L1 norm is the sum of the absolute values of the en-
tries (Manhattan distance), the L2 norm is the Euclidean norm, and the L∞ norm is the maximum
of the absolute values of the entries. Intuitively, p tells us how much the larger entries are weighed
relative to the smaller entries. The L∞ norm ignores all but the largest entry3, while the L1 norm
treats all entries equally. Additionally, we require p ≥ 1; p < 1 violates the triangle inequality, as
can be seen easily for x = (1, 0) and y = (0, 1).

We call Lp and Lq dual if 1/p+ 1/q = 1. Then Hölder’s inequality states:

∥x∥p = max
∥y∥q=1

|⟨x, y⟩| . (2.14)

We will not prove Hölder’s inequality but can inspect a few cases. p = 2 and q = 2 are dual,
yielding:

∥x∥2 = max
∥y∥2=1

|⟨x, y⟩| . (2.15)

3Note that duplicated entries are not a problem. Even if there are m copies of the largest entry, the factor of m
is suppressed by the 1/p power.
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This is consistent with the Cauchy-Schwarz inequality: ⟨x, y⟩ ≤
√
⟨x, x⟩ ⟨y, y⟩ with saturation if

and only if x ∝ y. p = 1 and q =∞ are also dual, yielding:

∥x∥1 = max
∥y∥∞=1

|⟨x, y⟩| ,∑
i

|xi| = max
max(|yi|)=1

|⟨x, y⟩| .
(2.16)

This makes sense; if x = (r1e
iθ1 , r2e

iθ2 . . . rde
iθd) for positive r and θ, then the maximum is achieved

by y = (e−iθ1 , e−iθ2 . . . e−iθd). p =∞ and q = 1 are also dual, yielding:

∥x∥∞ = max
∥y∥1=1

|⟨x, y⟩| ,

max(xi) = max∑
i |yi|=1

|⟨x, y⟩| .
(2.17)

This also makes sense; the maximum is achieved by yi = δi,argmax(|xi|).

2.1.3 Matrix Norms

For some operator X, the Schatten p-norm Sp is:

∥X∥Sp
≡ ∥X∥p = ∥Σ(X)∥p, (2.18)

where Σ(X) are the singular values of X. The Schatten p-norm of X is the Lp norm of X’s singular
values. All of the Sp norms have the nice property that they are invariant under left or right matrix
multiplication by a unitary, because this does not change the singular values. If X is Hermitian,
the singular values may be replaced with eigenvalues.

S∞(X) corresponds to the maximum singular value of X, which is also the maximum factor by
which X can stretch a vector by:

∥X∥∞ = maxΣ(X) = max
∥v∥2=1

∥Xv∥. (2.19)

S1 and S2 can be expressed without using the SVD:

∥X∥1 = Tr
√
X†X, ∥X∥2 =

√
TrX†X, (2.20)

where the square root is well-defined because X†X is positive semi-definite. It is easy to show that
Eq. 2.20 is consistent with Eq. 2.18 by plugging in X = UΣV †.

We note that proving the triangle inequality for Sp is nontrivial.

2.1.4 Some Useful Sets

The unit sphere S and ball B with respect to some norm ∥·∥ are:

S = {x : ∥x∥ = 1}, (2.21)

B = {x : ∥x∥ ≤ 1}. (2.22)

Below are a few sets commonly encountered in quantum information science:
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• Pure quantum states: S(L2),

• Classical probability distributions: S(L1) ∩ {nonnegative entries},

• Density matrices: S(S1) ∩ {positive semidefinite},

• Measurement operators: B(S∞) ∩ {positive semidefinite}.

2.2 Comparing Probability Distributions

2.2.1 Total Variation Distance

The total variation distance (TVD) between two probability distributions p and q is:

T (p, q) =
1

2
∥p− q∥1 =

1

2

∑
i

|pi − qi| . (2.23)

Note that

T (p, q) =
1

2

∑
i

|pi − qi| ≤
1

2

∑
i

(pi + qi) = 1, (2.24)

so T (p, q) ∈ [0, 1].

T (p, q) has a nice operation definition. Consider a guessing game where we are given a random
variable X, drawn either from distribution p or q with equal prior probability 1/2. Given X’s
value, how often can we correctly guess which distribution it was drawn from? Bayes’ rule gives
the probability that X was drawn from p given X = i:

P (X from p|X = i) =
pi

pi + qi
. (2.25)

The best strategy is to guess p if P (X from p|X = i) > 1/2 and q otherwise, so the probability
that we guess correctly given X = i is

P (correct|X = i) = max

(
pi

pi + qi
,

qi
pi + qi

)
=

1

2
+
|pi − qi|
2(pi + qi)

. (2.26)

Then the probability that we guess correctly in general is:

P (correct) =
∑
i

P (correct|X = i)P (X = i)

=
∑
i

[
1

2
+
|pi − qi|
2(pi + qi)

] [
pi + qi

2

]
1

2
+
T (p, q)

2
.

(2.27)

For example, if T (p, q) = 1/2, then we can correctly guess whether a random variable was drawn
from p or q three-quarters of the time.
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2.2.2 Fidelity (Bhattacharyya Coefficient)

An alternative way of comparing probability distributions is the fidelity:

F (p, q) = ⟨√p,√q⟩ , (2.28)

where
√
p is the element-wise square root of the vector of probabilities. The square root is necessary

to guarantee that F (p, p) = 1 for all p, something which would not be true for ⟨p, p⟩.

If our random variable comes from concatenating two independent random variables, i.e. i =
(a, b), pi = papb, then the fidelity factorizes:

F (pi, qi) =
∑
i

√
piqi

=
∑
a,b

√
papbqaqb

= F (pa, qa)F (pb, qb).

(2.29)

The TVD notably lacks this property. The total variation distance and fidelity also satisfy the
inequalities

1− F ≤ T ≤
√
2(1− F ). (2.30)

Even through T doesn’t factorize, Eq. 2.30 allows us to bound T (p⊗n, q⊗n), where p⊗n means the
probability distribution corresponding to drawing n times from p. In particular, T approaches 1
exponentially in n.

2.3 Quantum Distinguishability

What is the appropriate metric via which we should compare quantum states? A first guess could
be the ℓ2 vector norm, i.e. ∥ |p⟩ − |q⟩ ∥2. This is equal to

√
2(1− Re(⟨p|q⟩) and has an undesirable

sensitivity to relative phase. By maximizing over the global phase, we obtain the closeness measure,

| ⟨p|q⟩ |

which we’ll define as the fidelity between |p⟩ and |q⟩. However, this definition also has a drawback,
which is that there is no nice “operational” interpretation of fidelity. For that, we introduce the
trace distance

Definition 2.3.1 (Trace Distance). Let ρ, σ be two mixed states. The trace distance between ρ, σ
is denoted T (ρ, σ) and is defined equivalently as,

T (ρ, σ) =
1

2
∥ρ− σ∥1 (2.31)

= max
0⪯M⪯I

tr[M(ρ− σ)] (2.32)

This metric has some nice properties,

• (Unitary Invariance) T (V ρV †, V σV †) = T (ρ, σ)

• (Data Processing Inequality or Monotonicity) T (E(ρ), E(σ)) ≤ T (ρ, σ)
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In fact, by defining our channel via the measurement obtaining the maximum in (2.32) we can
saturate the monotonicity bound:

E(ρ) := tr[Mρ] |0⟩⟨0|+ tr[(I−M)ρ] |1⟩⟨1|

Note that we’ve define trace distance over mixed states, whereas our definition of fidelity was limited
to pure states. We can generalize to mixed states as follows,

Definition 2.3.2 (Fidelity). Let ρ, σ be two mixed states. The fidelity between ρ, σ is denoted
F (ρ, σ) and is defined as

F (ρ, σ) = ∥√ρ
√
σ∥1 = tr

[√√
ρσ
√
ρ

]
Some nice properties of fidelity are,

• (Fuchs-van de Graaf Inequalities) 1− F ≤ T ≤
√
1− F 2

• (DPI or Monotonicity) F (E(ρ), E(σ)) ≤ F (ρ, σ)

We’ll prove the Fuchs-van de Graaf inequalities in the problem set. Interestingly, fidelity does not
satisfy the triangle inequality (and thus is not a metric); however, arccos(F (·, ·)) does.

2.3.1 Uhlmann’s Theorem

The definition we gave for fidelity is quite cumbersome; in practice it can be very annoying to
compute the square roots of matrices. Uhlmann’s theorem gives a nice alternative characterization
of the fidelity between mixed states.

Theorem 2.3.1 (Uhlmann’s Theorem). Let ρ, σ be two mixed states defined over a quantum register
A. Then,

F (ρ, σ) = max
|ρ⟩AB s.t. trB [|ρ⟩⟨ρ|]=ρ
|σ⟩AB s.t. trB [|σ⟩⟨σ|]=σ

| ⟨ρ|σ⟩ |

i.e. the mixed state fidelity between ρ and σ is the maximum pure state fidelity between purifications
of ρ and σ.

Before giving the proof of this theorem, we define the “canonical” purification of a mixed state.
To do so, we define the (unnormalized) maximally entangled state between two registers A and B
of equal dimension d as,

|Γ⟩ =
d∑
i=1

|i⟩A |i⟩B

Definition 2.3.3 (Canonical Purification). For a mixed state ρ, its canonical purification is denoted
by |ϕρ⟩ and defined as,

|ϕρ⟩ := (
√
ρA ⊗ IB) |Γ⟩AB

The fact that trB[ϕ
ρ] = ρ can be verified by a simple computation. We’ll also need the following

lemma, which, intuitively, we should think of as the matrix analogue of “tuning” the phases of a
probability distribution to obtain the ℓ1 norm.

Lemma 2.3.1.
max
U
| tr[AU ]| = ∥A∥1



Proof. Take the singular-value decomposition of A to obtain A = UDW †. Then, tr[AU ] =
tr
[
DW †UV

]
, where we’ve used the cyclic property of the trace. Rather than maximizing over

U , consider maximizing over U = WŨV †. This is equivalent as for an original U⋆, we can set
Ũ =W †U⋆V and then U = U⋆. Thus,

max
U

tr
[
DW †UV

]
= max

U=WŨV †
tr
[
DW †UV

]
= max

Ũ
tr
[
DŨ

]
But since D is a diagonal matrix, the RHS is just maxU

∑
iDi,iUi,i ≤ tr[|D|] = ∥A∥1.

We now give the proof of Uhlmann’s theorem.

Proof of Theorem 2.3.1. Recall that all purifications of a mixed state ρA as |ρ⟩AB are equivalent
under a unitary on just the B register. As a result, we can replace max|ρ⟩,|σ⟩ | ⟨ρ|σ⟩ | with

max
U,V
| ⟨ϕρ| (I⊗ UB)(I⊗ VB) |ϕσ⟩ | (2.33)

But UBVB is just another unitary and can think of this as fixing |ϕρ⟩ and only maximizing over a
single unitary (which is equivalent to maximizing over purifications of σ). Then,

(2.33) = max
U
| ⟨ϕρ| (I⊗ U) |ϕσ⟩ | (2.34)

= max
U
⟨Γ| (√ρ⊗ I)(I⊗ U)(

√
σ ⊗ I) |Γ⟩ (2.35)

= max
U
⟨Γ| (√ρ

√
σ)⊗ U |Γ⟩ (2.36)

= max
U

tr
[√

ρ
√
σU⊤

]
(2.37)

= ∥√ρ
√
σ∥1 (2.38)

where in (2.37) we’ve used that the maximally mixed state over registers A,B satisfies (I⊗U) |Γ⟩ =
(U⊤ ⊗ I) |Γ⟩. The last equality uses Lemma 2.3.1.

2.4 No-go Theorem for Bit Commitment

To conclude the lecture, we revisit the no-go theorem from the first lecture and relax the hiding
condition so that Bob is allowed some small probability of recover Alice’s commitment. Formally,
let’s say that an honest Alice commits to the states |ψ0⟩AB or |ψ1⟩AB. Then, a limit on Bob’s
ability to distinguish these two states corresponds to requiring,

T (trA[ψ0], trA[ψ1]) ≤ ε =⇒ F (trA[ψ0], trA[ψ1]) ≥ 1− ε

Since |ψ0⟩AB and |ψ1⟩AB are purifications of trA[ψ0] and trA[ψ1], we know that there exists a unitary
U such that,

F ((U ⊗ I) |ψ0⟩ , |ψ1⟩) ≥ 1− ε

Define |ψfake⟩ := (U ⊗ I) |ψ0⟩. Converting back to trace distance, we have that

T (ψfake, ψ1) ≤
√
2ε

monotonicitiy
=⇒ T (Ereveal(ψfake), Ereveal(ψ1)) ≤

√
2ε

We conclude that Bob cannot distinguish between |ψfake⟩, which corresponds to |ψ0⟩ with a unitary
applied to only Alice’s side, and |ψ1⟩. Thus, this protocol is not binding.

2-6
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Lecture 3: September 12, 2024

Scribe: Aditi Venkatesh and Jin Ming Koh Classical information theory

3.1 Introduction

There are parallels between classical and quantum information theory.

Application Classical information theory Quantum information theory

Data compression Shannon entropy von Neumann entropy

Channel coding Mutual information Quantum mutual information (for classi-
cal information over noisy channel); co-
herent information (for quantum informa-
tion over noisy channel).

Hypothesis testing Relative entropy Quantum relative entropy

3.2 Entropy

Entropy is a measure of uncertainty.

3.2.1 Shannon entropy

Definition 3.2.1 (Shannon entropy of single variable). For random variable X ∼ p such that
P(x) = p(x), the Shannon entropy of X is

H(X) = H(p) = −
∑
x∈X

p(x) log2 p(x). (3.39)

Some properties:

1. Bounds. The Shannon entropy satisfies 0 ≤ H(X) ≤ log2 d for d the size of the alphabet
of X. The lower bound is attained for deterministic X. The upper bound is attained for
uniformly random X.

2. Concavity. For all 0 ≤ λ ≤ 1,

λH(p1) + (1− λ)H(p2) ≤ H[λp1 + (1− λ)p2]. (3.40)

3. Norm power series expansion.

∥p∥1+ϵ =

(∑
x∈X

p(x)1+ϵ

) 1
1+ϵ

= 1 + ϵH(p) +O
(
ϵ2
)
. (3.41)
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Definition 3.2.2 (Shannon entropy of two variables). For random variables (X,Y ) ∼ p such that
P(x, y) = p(x, y), the Shannon entropy of the joint distribution

H(X,Y ) = −
∑

(x,y)∈(X,Y )

p(x, y) log2 p(x, y). (3.42)

For a product distribution, H(X,Y ) = H(X) +H(Y ).

3.2.2 Conditional entropy

Definition 3.2.3 (Conditional entropy). For random variables (X,Y ) ∼ p such that P(x, y) =
p(x, y), the conditional entropy of Y given X is

H(Y |X) = −
∑
x∈X

P(X = x)H(Y |X = x) (3.43)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (3.44)

= H(X,Y )−H(X), (3.45)

where we have noted p(y|x) = p(x, y)/p(x).

The physical intuition is that H(X) is the uncertainty of X, whereas H(Y |X) is the uncertainty
of Y when we know X. Therefore H(X,Y ) = H(X) +H(Y |X).

Remark 3.2.1 (Chain rule). For random variables (X1, X2, X3),

H(X1, X2, X3) = H(X1) +H(X2|X1) +H(X3|X1, X2). (3.46)

Remark 3.2.2 (Non-negativity of conditional entropy). Classically, H(Y |X) ≥ 0. But not so
quantumly. An example is an EPR pair. Then H(X,Y ) = 0 as the two subsystems jointly are in
a pure state, but H(X) = H(Y ) = 1 as the reduced density matrix of each subsystem is maximally
mixed. That is, quantumly, the joint probability distribution can possess less entropy than its
marginal distributions.

3.2.3 Mutual information

Definition 3.2.4 (Mutual information). The mutual information between random variables (X,Y )
is

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3.47)

The physical interpretation is that I(X;Y ) is how much information one learns about X when one
looks at Y , or symmetrically, how much information one learns about Y when one looks at X.

Remark 3.2.3 (Non-negativity of mutual information). Both classically and quantumly,

I(X;Y ) ≥ 0⇐⇒ H(X) +H(Y ) ≥ H(X,Y )⇐⇒ H(Y |X) ≤ H(Y ). (3.48)
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3.2.4 Entropy of density matrices

Definition 3.2.5 (Shannon entropy of density matrix). The Shannon entropy of a density matrix
ρ is

H(ρ) = −
∑
k

λk log2 λk (3.49)

where {λk}k are the eigenvalues of the matrix.

The entropy H(ρ) is the Shannon entropy of the probability distribution of measurement outcomes
obtained when ρ is measured in its eigenbasis.

Remark 3.2.4 (Strong sub-additivity). For quantum systems A, B and C,

H(A) +H(ABC) ≤ H(AB) +H(AC). (3.50)

3.3 Noiseless coding theorem

Theorem 3.3.1 (Noiseless coding theorem). It is possible to compress n length iid message x1, x2, . . . , xn,
from x X, to nH(X) + o(1) bits, with perfect recovery.

Proof. Lets consider the probability distribution X := {x, p(x)} where each letter xi has probability
p(xi). For an n-letter message,

p(x1x2...xn) =
n∏
i=1

p(xi)

due to iid. Unless X is uniformly random it is possible to compress this distribution to an smaller
string. Using the law of large numbers we know that for a string of n letters, xi typically occurs
np(xi) times. Therefore using Stirling’s approximation we can say that the number of typical strings
is

n!∏
x(np(x))!

≈ 2nH(X)

where,

H(X) = −
∑

p(x) log2 p(x)

If we use a block code that relates integers to typical sequences of the n-letter message, then the
information in the n-letter string can be conveyed in on average nH(X) bits. We need the +o(1)
in order to prove achievability.

3.4 Noisy coding theorem

Consider now that the channel over which we transmit information is noisy. We encode our input
message, pass the encoded message over the channel, and decode at the destination.

Definition 3.4.1 (Rate). Using a message of length n sent over the channel to encode a message
of length k, the rate of the transmission is R = k/n.

Definition 3.4.2 (Channel capacity). Consider a noisy channel which receives random variable X
as input and outputs random variable Y . Then the channel capacity is

C = max
X

I(X;Y ), (3.51)

where the maximization is performed over the input random variable X.



Theorem 3.4.1 (Noisy coding theorem). Consider sending a message of length n over a noisy
channel at rate R. It is possible to do so with vanishing probability of error as n → ∞ as long as
R < C where C is the capacity of the channel. Otherwise, the probability of error approaches unity
as n→∞.

Proof. Consider a discrete memoryless channel with input alphabet X and output alphabet Y. The
channel is characterized by a conditional probability distribution P (y|x), which gives the probability
of receiving symbol y ∈ Y when x ∈ X is sent from Alice to Bob. R and C of the code are defined
as

R =
log2M

n
,

C = max
P (x)

I(X;Y ),

where M is the number of codewords, and n is the length of each codeword. Construct a random
codebook by selecting M = 2nr codewords x1, x2, . . . , xM independently and uniformly from X n
according to the distribution P (x). Bob observes the output yn ∈ Yn and decodes the received
message to one of the M possible codewords. The goal is to show that for r < C, the probability

of error can be made arbitrarily small as n → ∞. Define the jointly typical set T
(n)
ϵ (X,Y ) as the

set of pairs (xn, yn) such that: ∣∣∣∣− 1

n
logP (xn)−H(X)

∣∣∣∣ < ϵ,∣∣∣∣− 1

n
logP (yn)−H(Y )

∣∣∣∣ < ϵ,∣∣∣∣− 1

n
logP (xn, yn)− I(X;Y )

∣∣∣∣ < ϵ.

Decoding is performed by finding the unique codeword xni such that the pair (xni , y
n) is jointly

typical.
The probability of error can be decomposed into two types: 1. No codeword xni is jointly typical

with yn. 2. There exists a codeword xnj (with j ̸= i) that is jointly typical with yn.
The probability of the first type of error vanishes as n → ∞, by the law of large numbers

and the properties of typical sets. For the second type of error, using the union bound and the
independence of codewords, we get:

P (error) ≤ P (incorrect decoding) ≤ (M − 1)P (codeword typical with yn).

Since the number of codewords M = 2nr and the probability that a randomly chosen codeword
is jointly typical with yn is approximately 2−nI(X;Y ), the probability of error is bounded by:

P (error) ≤ (M − 1)2−nI(X;Y ) ≈ 2n(R−I(X;Y )).

Thus, for R < C, the probability of error tends to zero as n → ∞. Conversely, if r > C, the
probability of error approaches 1 as n→∞.

Therefore, reliable communication over a noisy channel is possible at any rate R < C, and the
probability of error can be made arbitrarily small. Conversely, for rates R > C, the probability of
error approaches 1.

3-4
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4.1 Classical Compression

Last class we talked about Shannon’s noiseless coding theorem and data compression. We said if
R > H(p) compression is possible (direct) and if R < H(p) compression is impossible (converse).
Here we will prove the converse (the direct proof is in the previous lecture note). We can define a
typical set as

Tnp,δ = {xn = (x1, x2, ..., xn) :

∣∣∣∣− 1

n
log p⊗n(xn)−H(p)

∣∣∣∣ < δ}

ϵ = 1− p⊗n(Tnp,δ) ≤ 2−nδ → 0 as n→∞

This implies that the set of non-typical sequences becomes vanishingly small as n increases.
Now, suppose we want to compress the source Xn to k bits, where k < nH(p). The goal is to

show that this compression will lead to a vanishing probability of correctly decoding the original
sequence.

Consider the compression process:

xn
Encoder (E)−−−−−−−→ m

Decoder (D)−−−−−−−→ xn

Here, xn is the original sequence, m is the compressed version (with k bits), and xn is the decoded
sequence. The encoder uses r as a random seed to perform the compression. Pick r to maximize

P (D(E(xn)) = xn | r)

Let S ⊆ Σn be the set of sequences that can be decoded correctly. Since we’re compressing to k
bits, the size of this set is constrained by |S| ≤ 2k. We now want to bound the probability that a
sequence xn is decoded correctly.

pn(S) ≤ pn(Tnp,δ ∩ S) + pn(Tn
c

p,δ)

The second term, pn(Tn
c

p,δ), is the probability of being in the non-typical set, which is upper-bounded
by ϵ, a small quantity that goes to zero as n → ∞. The first term can be bounded using the size
of S and the fact that typical sequences occur with probability around 2−nH(p):

pn(Tnp,δ ∩ S) ≤ 2k2−nH(p)+nδ

Thus, the total probability is:
pn(S) ≤ 2k2−nH(p)+nδ + ϵ

→ 0 if
k

n
< H(p)

This shows that if the compression rate k/n is less than H(p), the probability of correctly
decoding the sequence goes to zero as n increases. Therefore, it is not possible to compress below
the entropy rate without losing information.
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4.2 Quantum Compression (Entropy)

The entropy of a density matrix ρ, also known as the von Neumann entropy, is defined as:

S(ρ) = H(eig(ρ)) = −Tr(ρ log ρ),

where H(eig(ρ)) is the Shannon entropy of the eigenvalues of ρ.

4.2.1 Bounds on Entropy

The von Neumann entropy satisfies the following bounds:

0 ≤ S(ρ) ≤ log d,

where d is the dimension of the Hilbert space.
If S(ρ) = 0, then the eigenvalues of ρ are (1, 0, 0, . . . , 0), implying that ρ = |ψ⟩⟨ψ| for some pure

state |ψ⟩. If S(ρ) = log d, then ρ is the maximally mixed state:

ρ =
I

d
.

4.2.2 Conditional Entropy

The entropy of a system X is given by:

S(X) = S(ρX).

The conditional entropy is defined as:

S(X|Y ) = S(XY )− S(Y ),

which can be negative. This definition carries over from classical information theory.

4.2.3 Mutual Information

The mutual information between two systems X and Y is defined as:

I(X : Y ) = S(X) + S(Y )− S(XY ),

which can also be expressed as:

I(X : Y ) = S(X)− S(X|Y ).

4.3 Typical Subspaces and Projectors

4.3.1 Definition of Typical Subspace

Let ρ be a density matrix acting on a Hilbert space H, and let ϵ > 0 be a small positive number.

The typical subspace, denoted T (n)
ϵ , is defined as the span of the eigenvectors of ρ⊗n corresponding

to eigenvalues close to 2−nS(ρ), where S(ρ) is the von Neumann entropy of ρ:

S(ρ) = −Tr(ρ log ρ).

The typical subspace satisfies the following properties:

• P
(
ψ ∈ T (n)

ϵ

)
≥ 1− ϵ for a random state ψ drawn from ρ⊗n.

• The dimension of the typical subspace is approximately 2nS(ρ) for large n.
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4.3.2 Properties of Typical Subspaces

1. High Probability Support : A quantum state ψ drawn according to ρ⊗n has a high probabil-
ity of being in the typical subspace. This is crucial for understanding the structure of quantum
information over many copies.

2. Dimensionality : The typical subspace has dimension dtyp ≈ 2nS(ρ), where S(ρ) is the von
Neumann entropy of ρ. This shows that the size of the subspace grows exponentially with the
number of copies n.

4.4 Projectors onto Typical Subspaces

Given the typical subspace T (n)
ϵ , we define a projector Ptyp that projects any state onto this

subspace.

4.4.1 Construction of the Projector

Let ρ⊗n be the n-fold tensor product of the density matrix ρ. We diagonalize ρ⊗n in its eigenbasis:

ρ⊗n =
∑
i

λi|i⟩⟨i|.

The typical subspace corresponds to the eigenvalues λi that satisfy

2−n(S(ρ)+δ) ≤ λi ≤ 2−n(S(ρ)−δ),

where δ > 0 is a small positive number. The projector onto the typical subspace is given by

Ptyp =
∑

i:λi typical

|i⟩⟨i|.

4.4.2 Properties of the Projector

The projector Ptyp has the following important properties:

• Approximate Preservation of Trace: For large n, we have Tr(Ptypρ
⊗n) ≥ 1 − ϵ. This means

that most of the probability mass of ρ⊗n lies within the typical subspace.

• Dimensionality : The rank of Ptyp (the dimension of the typical subspace) is approximately
2nS(ρ).

4.5 Quantum Compression

Below we give four possible schemes of quantum compression and decide whether or not they are
valid.

1. In the first scheme we have n copies of a density matrix ρ and we apply an encoder E and
then a decoder D and check if the final density matrix matches the initial one.



2. In the second scheme we can define xn λn and check E
xn∼λn

F (σ, |vxn⟩) ≈ 1.

3. In the third scheme we define ρ =
∑

i pi |ωi⟩ ⟨ωi| and check if the final state is close to the
initial state.

4. In the fourth scheme we have n copies of a state |ϕρ⟩ which we entangle with a reference.
Then we apply the encoder and the decoder and check if the joint state is close to the initial
state.

The first scheme does not work because it does not preserve correlations. We can see that the
fourth, third, and second are equivalent (4 −→ 3 −→ 2 −→ 4). It is easy to show that (3 −→ 2) by
choosing the eigenbasis. To show (4 −→ 3), we use the fact that ∀ ensembles {pi, |ωi⟩} such that
ρ =

∑
i pi |ωi⟩ ⟨ωi| there exists measurement operators M1, ...,Ml on R that induces this ensemble.

4-4
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5.1 Huffman codes as an interpretation of entropy

Here’s an interesting interpretation of entropy given by Shannon. Suppose X ∼ p. How surprised
would you be to see that X = x? For example, in the English language, you wouldn’t be very
surprised if X = e, but you would be pretty surprised if X = q. Define

surprise(x) = log
1

p(x)
. (5.52)

The idea of this definition is that 1/p(x) gets larger as p(x) gets smaller, so that as things are less
probable we are more surprised. But why the log? This comes from an exp licit construction of an
information compression scheme known as Huffman coding. The idea is to map an outcome x into
a bitstring

x −→ Enc(x) s.t. |Enc(x)| =
⌈
log

1

p(x)

⌉
= ⌈surprise(x)⌉. (5.53)

If you pretend for a moment that all the probabilities are dyadic (i.e. 2−k for some k depending
on x), then the log gives an immediate interpretation of representing a number as a bitstring. In
making the encoding, you have to be careful to ensure that it can be decodable. One straightforward
way to do this is by ensuring that the code is prefix-free, i.e. that no codeword is the prefix of
another codeword. If this weren’t the case, we would get lost trying to decode locally. As an
example, consider the Table 5.1 below. If we instead encoded a with 1, and we have a stream of

x p(x) Enc(x)

a 1/2 0

b 1/4 10

c 1/8 110

d 1/8 111

Table 5.1: Huffman coding for a dyadic distribution over 4 characters.

bits coming in that look like 111, we couldn’t distinguish aaa from d. (We could add separation
characters between each encoded bitstring, but that would increase the encoding size!)

Note that if p is a dyadic distribution, H(p) = E[|Enc(X|], giving a constructive interpretation
of entropy as the average Huffman encoding length. In general, the ceiling gives a few off-by-one
errors that makes the Huffman code slightly more annoying to deal with. We won’t get into that
here, but it doesn’t make any practical impact on the fundamental concepts we have discussed.

5.2 Relative entropy

Let’s now imagine that we are trying to follow the Huffman procedure to encode our data into bits.
The data comes from a distribution p, but we don’t know p. Instead, we guess a distribution q and
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encode according to q instead. How good is our Huffman code now? Define the Huffman encoding
map using q as Encq. The new average length of the encoding is given by

EX∼p[Encq(X)] =
∑
x

p(x) log
1

q(x)
. (5.54)

To study this quantity, we would like to write it in terms of the actual entropy H(p) and some kind
of measure of how much q deviates from p.

Definition 5.2.1. The relative entropy of q relative to p is given by D(p||q) =
∑

x p(x) log
p(x)
q(x) .

In a very loose sense, the relative entropy D(p||q) is meant to give a “distance” between distri-
butions p and q. However, note that D(p||q) is not symmetric. Also, p is supported on a character
in which q is not, D(p||q) is infinite! So what can we say about it?

Theorem 5.2.1. D(p||q) ≥ 0.

Proof. One way to prove this is by applying Shannon’s noiseless coding theorem. But we’ll do this by
a direct algebraic proof because of how important this bound is. First, note that 1+z ≤ ez ∀z ∈ R.
In particular, z ≤ ez − 1. Now let z = ln y, so that ln y ≤ y − 1 and thus ln 1

y ≥ 1− y. Hence,

Figure 5.1: ez (blue) is lower bounded by 1 + z (red).

D(p||q) =
∑
x

p(x) log
p(x)

q(x)
=

1

ln 2

∑
x

p(x) ln
p(x)

q(x)
(5.55)

≥
∑
x

p(x)

(
1− q(x)

p(x)

)
=
∑
x

p(x)− q(x) = 1− 1 = 0. (5.56)

There are a number of important corollaries that follow almost immediately from this result.

Corollary 5.2.1. H(p) ≤ log d where d is the size of the character set from which p draws.

Proof. First, define u ∈ Rd to be the uniform distribution, that is u = (1/d, . . . , 1/d). Then

0 ≤ D(p||u) =
∑
x

p(x)(log p(x) + log d) (5.57)

= log d−H(p) (5.58)
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This quick proof emphasizes the the asymmetry of the relative entropy is telling you something
- the mixed thing should always go second!

We give the following inequality without proof

Theorem 5.2.2 (Pinsker’s Inequality).

D(p||q) ≥ 1

2 ln 2
||p− q||21 (5.59)

Using this, we can make rigorous an intuition that H(p) being close to log d means that p is
close to uniform. Suppose H(p) ≥ log d − δ. Then D(p||u) ≤ δ, which by Pinsker’s inequality
implies that ||p− u||1 ≤

√
2 ln(2)δ.

We’ll next use relative entropy to prove things about mutual information.

Corollary 5.2.2.

0 ≤ I(X;Y ) = H(X) +H(Y )−H(XY ) (5.60)

= H(X)−H(X|Y ) (5.61)

= H(Y )−H(Y |X) (5.62)

We can interpret this as saying that a) mutual information is a correlation (non-negative) b)
conditioning reduces entropy.

Proof. Consider the relative entropy between a joint distribution pXY , and the product of it’s
marginals:

D(pXY ||pX ⊗ pY ) =
∑
x,y

pXY (x, y) (log(pXY (x, y))− log pX(x)− log pY (y)) (5.63)

The first term is simply −H(XY ). Looking at the second term,
∑

x,y pXY (x, y) log pX(x), we see
that by summing over y, we recover the marginal pX(x), and so this is just equal toH(X). Similarly,
the third term is just H(Y ). Putting it all together yields

D(pXY ||pX ⊗ pY ) = −H(XY ) +H(X) +H(Y ) (5.64)

≥ 0 (5.65)

where the inequality follows because relative entropy is non-negative.

As a final application, we will prove that entropy is concave.

Corollary 5.2.3.

Let {px} be a set of probability distributions, and πx be a a probability distribution. Then∑
x

πxH(px) ≤ H(
∑
x

πxpx) (5.66)

Proof. Define p(x, y) = πxpx(y). Then

H(Y |X) = H(X,Y )−H(X) (5.67)

= −
∑
x,y

πxpx(y) log(πxpx(y))−
∑
x

πx log(1/πx) (5.68)

=
∑
x

πxH(px) (5.69)
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and

H(Y ) = H

(∑
x

πxpx

)
. (5.70)

Concavity then follows from the fact that H(Y |X) ≤ H(Y ).

5.2.1 Hypothesis Testing

Hypothesis testing is concerned with the following question: suppose we have two distributions p
and q, and we get a sample x that we are told came either from p or q. How can we decide which?

There are two possible mistakes you could make, which are very descriptively called ”type 1
error” and ”type 2 error”.

• Type 1 error: You guess x ∼ q when actually x ∼ p. We will use α to denote the probability
of a type 1 error.

• Type 2 error: You guess x ∼ p when actually x ∼ q. We will use β to denote the probability
of a type 2 error.

There are a few different kinds of hypothesis testing:

• Symmetric hypothesis testing: Come up with a test that minimizes (α + β)/2, which has a
minimum of 1

2 ||p− q||1.

• Bayesian hypothesis testing: Come up with a test that minimizes πα+(1−π)β, which has a
minimum of ||πp− (1− π)q||1 + f(π) for some function f (π is prior probability that it’s p.)

• Asymmetric hypothesis testing: Minimize β, subject to the contraint that alpha < ϵ.

We are going to study asymmetric hypothesis testing. Let βϵ = min {β|α ≤ ϵ}, and βnϵ =
βepsilon for distinguishing pn vs qn (i.e. you get n samples to distinguish p and q).

As a first observation, note that as we increase n, we should get more confident, and βϵ should
go decrease. One might hope that it will scale as e−nR for some R, and this indeed turns out
to be the case, with R being the relative entropy.

Theorem 5.2.3 (Chernoff-Stein). For all ϵ ∈ (0, 1),

lim
n→∞

−1
n

log βnϵ = D(p||q) (5.71)

Instead of proving this theorem, we will look at a few examples to see the sorts of tests that
yield the desired βϵ.

Examples

1. Suppose p = q. Then ⇔ D(p||q) = 0 and βnϵ stays constant, as the distributions are
identical and there’s nothing that can distinguish them.

2. Suppose q is the uniform distribution. Then D(p||q) = log d − H(p). Here is a test:
take a sample and check if xn ∈ Tnp,δ. If it is, guess p, otherwise, guess q. We see that



the probability of a type one error is the probability that the sample is not in Tnp,δ, i.e.

α = pn(Tnp,δ) which goes to zero as n goes to infinity. We can also see that

β = un(Tnpδ) (5.72)

=
|Tnp,δ|
dn

(5.73)

≤ exp (nH(p) + nδ − n log d) (5.74)

= exp (−n(D(p||u)− δ)) (5.75)

Since we can make δ arbitrarily small, we see that our test obtains the scaling from
theorem 5.2.3.

3. Suppose D(p||q) = ∞. Then, A = supp(p) \ supp(q) ̸= ∅, i.e. the support of p is not
contained in the support of q. We can then use a simple test: if there exists an xi in the
sample such that xi ∈ A, then guess p. Otherwise, guess q. Since xi being in p guarantees
that the sample came from p, we get β = 0, and α = p(supp (q))n → 0 as n gets big.

5-5
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6.1 Chernoff-Stein Lemma

Let’s start by proving the Chernoff-Stein Lemma from the last lecture. The setup: we have a string
xn, which was sampled either from pn or qn, and we want to know which. To do this, we will look
at the likelihood ratio test (LRT). To perform this test, we first compute

W (xn) = log
pn(xn)

qn(xn)
. (6.76)

Note that W is a random variable, and that

• Exn∼pn [W ] = nD(p||q)

• Exn∼qn [W ] = −nD(q||p)

Then, to make the decision, we define some value T such that if W ≥ T , we guess pn, and if
W < T , we guess qn. Let A = {xn|W (xn) ≥ T} be the ”acceptance region”.

We’re interested in asymmetric hypothesis testing: we need pn(A) ≥ 1− ϵ (i.e. the probability
that we guess q when it was actually p should be less than ϵ), and then qn(A) ≤ e−nR for some R
(the probability that we guess p when it was actually q should grow exponentially small with n).

To decide where to set T , observe that if you set the threshold above nD(p||q), then (in the
limit of large sample sizes), we will never guess p. On the other hand, if we set the threshold below
−nD(q||p), we will never guess q. This suggests we should set T somewhere inside this range. Since
we want to minimize qn(A), we’ll pick T to be closer to this upper bound: T = n(D(p||q)− δ).

We will first show that this T achieves the desired bound for pn(A). Consider that

pn(A) = Prxn∼pn

[
log

pn(xn)

qn(xn)
> nD(p||q)

]
(6.77)

= Prxn∼pn

[
D(p||q)− 1

n

n∑
i=1

W [xi] < δ

]
(6.78)

Since Ex∼p[W [x]] = D(p||q), and each of the xi are independent and identically drawn from the
source, by the law of large numbers, this quantity approaches 1 as n goes to infinity. Thus, for any
ϵ and δ we can take n large enough that pn(A) ≥ 1− ϵ.

Now to show that qn(A) is small. If xn ∈ A, then qn(xn) ≤ e−T pn(xn). Then,

qn(A) ≤ e−T pn(A) (6.79)

≤ e−T (6.80)

so R = D(p||q)− δ (for any δ > 0).
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6.1.1 Multiple hypothesis testing

We briefly mention another form of hypothesis testing: multiple hypothesis testing. Here, we have
Q ⊆ ∆d = {prob dists on [d]}. Now, we want to distinguish between the two cases xn ∼ pn or
qn for some q ∈ Q. Intuitively, it makes sense that distinguishing p from Q should be at least as
hard as distinguishing p from q∗, where q∗ is the distribution in Q closest to p (see figure 6.2).
It turns out that it is actually equally as hard - you can distinguish with the exponential rate

Figure 6.2: An example of multiple hypothesis testing. Given a sample xn, we want to distinguish
between two cases, xn ∼ pn, or xn ∼ qn where q ∈ Q, a subset of the probability simplex. Here, q∗

is the point in Q closest to p.

R = minq∈QD(p||q).

6.2 Quantum Relative Entropy and Quantum Chernoff-Stein

We will now turn to the quantum analogue of hypothesis testing. First, we define the quantum
relative entropy.

Definition 6.2.1 (Quantum Relative Entropy). The quantum relative entropy, D(ρ||σ), is defined
as

D(ρ||σ) = Tr[ρ(log ρ− log σ)].

Note that if [ρ, σ] = 0, this reduces to the classical relative entropy. Just like in the classical
case, D(ρ||σ) ≥ 0. From this, we get that

• S(ρ) ≤ d

• I(A;B) ≥ 0

• S(A) ≥ S(A|B)

We also have a Quantum Pinsker’s Inequality.

Theorem 6.2.1.

D(ρ||σ) ≥ 1

2 ln 2
||ρ− σ||21.

Now for asymmetric hypothesis testing. Our distributions now will be two quantum states, ρ
and σ, and the test will be a set of measurement operators {M, I −M} where an outcome of M
means we say the state is ρ, and an outcome of I −M means we say the state is σ. We now want
to find

βnϵ = min
{
Tr
[
Mσ⊗n

]
| TrMρ⊗n ≥ 1− ϵ

}
.
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Theorem 6.2.2 (Quantum Chernoff-Stein Theorem).

lim
n→∞

−1
n

log βnϵ = D(ρ||σ).

Before looking at the proof, we will examine the case when ρ and σ are pure and D(ρ||σ) =∞,
i.e. supp(ρ) ⊈ supp(σ). Let ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ|. The measurement that achieves the desired
rate is M = I − B⊗n, where A = |ϕ⊥⟩⟨ϕ⊥|, and B = I − A. (A result of M is saying that you
measured |ϕ⊥⟩ at least once).

Then
Tr(Mσ⊗n) = 0

while Tr(Mρ⊗n) → 1 as n → ∞ (in every register you get some probability of |ϕ⊥⟩, so as n → ∞
you are increasing your chances)

We will now prove the theorem.

Proof. We want anM such that Tr(ρnM) ≥ α and Tr(σnM) ≤ e−nR. The idea will be to construct
something similar to the LRT, but we will have to be careful about eigenbases.

Let ρ =
∑

x rx|αx⟩⟨αx| and σ =
∑

x sx|βx⟩⟨βx|.
Recall the definition of a typical projector:

Πnp,δ =
∑

xn:| 1
n

∑n
i=1 log rxi+Tr(ρ log ρ)|≤δ

|αxn⟩⟨αxn |.

Next, define

Πnρ||σ,δ =
∑

xn:| 1
n

∑n
i=1 log sxi−Tr(ρ log σ)|≤δ

|βxn⟩⟨βxn |.

We note that both of the subspaces defined by these projectors are typical under ρ, i.e.,
Tr(ρnΠnp,δ) ≥ 1−ϵ and Tr(ρ⊗nΠnρ||σ,δ) ≥ 1−ϵ. We also have that [Πnρ,δ, ρ

⊗n] = 0 and [Πnρ||σ,δ, σ
⊗n] =

0.
If we sandwich ρ⊗n between the typical projectors, we cut off the ”atypical” eigenvalues:

e−n(S(ρ)+δ)Πnp,δ ≤ Πnρ,δρ
⊗nΠnρ,δ ≤ e−n(S(ρ)−δ)Πnρ,δ.

Similarly, if you do the conditional projection, it squishes the eigenvalues of σ into the following
range:

en(Tr(ρ log σ)−δ)Πρ||σ ≤ Πρ||σσ
nΠρ||σ ≤ en(Tr(ρ log σ)+δ)Πρ||σ. (6.81)

(Note that from here on we will drop the δ and n on the typical projectors).
To get some intuition for equation 6.81, suppose you measure log σ =

∑
x log sxβx on ρ. Then

Pr[log sx] = Tr[ρβx],

and the expectation is Trρ log σ. If you do this n times, the law of large numbers says that the
average will approach the expectation.

We will first show achievability. Our measurement will be the product of both projectors - first
measure {Πρ||σ, I −Πρ||σ}, and if you get the positive outcome Πρ||σ, then measure {Πρ, I −Πρ}.

More rigorously, define
M = Πρ||σΠρΠρ||σ.

Then
Tr
(
ρ⊗nM

)
= Tr

(
ΠρΠρ||σρ

⊗nΠρ||σΠρ
)
.



We need to show that the probability of ρ accepting is large. As we saw above, the probability
of ρ accepting for each individual measurement is large. To show the combination works, we can
use the Gentle Measurement lemma, which says that the state after accepting Πρ||σ is still very
close to ρ:

||ρ⊗n −Πρ||σρ
⊗nΠρ||σ||1 ≤ 2

√
ϵ.

We then see that

Tr(Πρ(ρ
⊗n −Πρ||σρ

⊗nΠρ||σ)) ≤
1

2
||ρ⊗n −Πρ||σρ

⊗nΠρ||σ||1 ≤
√
ϵ

from which it follows that

Tr(ΠρΠρ||σρ
⊗nΠρ||σΠρ) ≥ Tr(Πρρ

⊗n)−
√
ϵ ≥ 1− ϵ−

√
ϵ.

So we have now showed that type one error is small enough, and now we need to bound type
two error. Consider that

Tr(Mσ⊗n) = Tr
(
ΠρΠρ||σσ

⊗nΠρ||σ
)

(6.82)

≤ Tr
(
Πρe

n(Tr(ρ log σ)+δ)Πρ||σ

)
(6.83)

≤ en(S(ρ)+δ)en(Tr(ρ log σ)+δ) (6.84)

= e−n(D(ρ||σ)−2δ) (6.85)

where we used the operator inequality from equation 6.81, the fact that Πρ||σ ≤ I, and that

Tr(Πρ) = |Tp| ≤ en(S(ρ)+δ).
We have now shown achievability. Next, we will use similar arguments to show the converse,

i.e., you cannot do better than the rate D(ρ||σ).
Suppose Tr (Mρ⊗n) ≥ α. Our goal is to show that Tr (Mσ⊗n) is ”not too small”. We will use

the following operator inequalities:

σ⊗n ≥ Πρ||σe
n(Tr(ρ log σ)−δ) (6.86)

Πρρ
⊗nΠρ ≤ e−n(S(ρ)−δ)Πρ. (6.87)

Now

Tr
(
Mσ⊗n

)
≥ Tr

(
Πρ||σM

)
en(Tr(ρ log σ)−δ) (6.88)

≥ (α−
√
2ϵ)e−n(D(ρ||σ)−2δ) (6.89)

and

Tr
(
Πρ||σM

)
≥ Tr

(
Πρ||σMΠρ||σΠρ

)
(6.90)

≥ Tr
(
MΠρ||σρ

⊗nΠρ||σe
−n(S(ρ)−δ)

)
. (6.91)

We can again use Gentle Measurement to show that Πρ||σρ
⊗nΠρ||σ is close to ρ⊗n, and using a

similar argument as before, we get that

Tr
(
MΠρ||σρ

⊗nΠρ||σ
)
≥ α−

√
2ϵ.

6-4
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Putting it all together, we find

Tr
(
Mσ⊗n

)
≥ (α−

√
2ϵ)e−n(D(ρ||σ)−δ) (6.92)

which completes the proof.
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Lecture 7: September 26, 2024

Scribe: Jonathan Lu Noisy channel coding

7.1 Aside: concavity of quantum entropy

Suppose we have two density matrices ρ0 and ρ1. We can mix them together with some probability
weight π to obtain ρ := πρ0 + (1 − π)ρ1. The concavity property of the quantum entropy S tells
us that S(ρ) is at least as large as the mixed entropy πS(ρ0) + S(ρ1). Because it’s so important,
let’s prove the concavity of S.

Theorem 7.1.1. S(ρ) = S(πρ0 + (1− π)ρ1) ≥ πS(ρ0) + (1− π)S(ρ1).

Proof. Let σAB = πρA0 ⊗ |0⟩⟨0|
B + (1 − π)ρA1 ⊗ |1⟩⟨1|

B. This is the labeled mixture, so that if we
have access to the B system we know which density matrix we have. Note now that

S(A) = S(ρ), S(B) = H2(π) := −π log π − (1− π) log(1− π). (7.93)

Also, by definition, S(A|B) = S(AB)−S(B) and S(AB) = − tr[σ log σ]. The structure of σ makes
it block diagonal, since

σ =

(
πρ0 0

0 (1− π)ρ1

)
, log σ =

(
log ρ0 + (log π)I 0

0 log ρ1 + log(1− π)I

)
. (7.94)

This block diagonal structure makes the calculation of the joint entropy simple:

S(AB) = − tr[σ log σ] = −π tr[ρ0 log ρ0]− π log π − (1− π) tr[ρ1 log ρ1]− (1− π) log(1− π)
(7.95)

= H2(π) + πS(ρ0) + (1− π)S(ρ1) (7.96)

= S(B) + S(A|B). (7.97)

We observe that the conditional entropy takes a simple form because the system being conditioned
upon is just a classical probability distribution:

S(A|B) = πS(ρ0) + (1− π)S(ρ1). (7.98)

Therefore, S(ρ) − [πS(ρ0) + (1 − π)S(ρ1)] = S(A) − S(A|B) = I(A;B) ≥ 0. The last inequality
follows from the fact that I(A;B) = D(ρAB||ρA ⊗ ρB) ≥ 0, as we saw in the classical case. The
proof that quantum relative entropy is non-negative is delegated to Problem Set 3.

7.2 Classical noisy channel coding

In lecture 3, we stated Shannon’s noisy coding theorem. Today we will prove it. Recall that
a channel is a conditional probability distribution N(y|x), so that if your input source is the
distribution π(x), the joint distribution of input-output pairs is p(x, y) = π(x)N(y|x). The capacity
of a channel is defined to encode the most amount of information you can send through the channel
with asymptotically small noise.
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Definition 7.2.1. For a channel N , the capacity is given by

C(N) = lim
ϵ→0

lim
n→∞

1

n
log |M(ϵ,N)|, (7.99)

where M(ϵ,N) is the set of messages that can be sent through Nn with error probability ≤ ϵ.

Figure 7.3 shows the model we will adopt, in which we encode a set of messages M into bits
before it is sent through a noisy channel, after which the noisy message is decoded into something
that is hopefully the original message.

Figure 7.3: Encoder-decoder model with a channel in bewteen them.

Theorem 7.2.1 (Shannon’s noisy coding theorem). C(N) = maxπ I(X;Y ).

Before we prove the theorem, let’s assume it’s true and look at some illustrative examples of
channels. For just these examples, let π be the probability that X = 0; we will only do examples
with a single bit.

1. Binary symmetric channel with error probability η. Let x, y be single bits. Then y = x⊕ ρ,
where Pr[ρ = 1] = η. So, the bit gets flipped with probability η. Then

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H2(η). (7.100)

To maximize, note that H2(η) does not depend on π, and H(Y ) ≤ 1. But if π = 1/2, then
H(Y ) = 1. Hence for any δ, we can asymptotically send n(1−H2(η)− δ) bits of information
to the output using n bits of input.

2. Erasure channel. Regardless of the input bit, there is a probability η that the channel maps it
to ⊥ (the “erased” message). Then H(Y |X) = H2(η) as with the binary symmetric channel.
To calculate H(Y ), we note that Y ∈ { 0, 1,⊥} with probabilities π(1− η), (1− π)(1− η), η.
Therefore,

H(Y ) = −π(1− η) log[π(1− η)]− (1− π)(1− η) log[(1− π)(1− η)]− η log η (7.101)

= H2(η) + (1− η)H2(π). (7.102)

So we want to maximize I(X;Y ) = H(Y ) − H(Y |X) = (1 − η)H2(π), which occurs when
again π = 1/2, giving a capacity C = 1− η.

The erasure channel capacity result is particularly remarkable. Consider a situation in which you
and your friend are talking over the phone. Sometimes, the phone glitches with probability η and
erases whatever your friend said at that time. To remedy this, you might say “what?”, asking your



friend to repeat herself. This protocol has an obvious capacity of 1−η, but it also involves feedback,
allowing the receiver to send information back to the sender. Shannon’s theorem implies by the
above that even without feedback, you can achieve the same capacity!

Now we want to actually prove Theorem 7.2.1. Let Alice send input bits and Bob receive output
bits. Alice will send bits x1, . . . , xn and Bob receives y1, . . . , yn. The intuition for this proof is that
we will only worry about the typical set of Y n, of which there are about 2nH(Y ), since those are
the only strings that will be sent asymptotically. On the other hand, for a given input string xn,
there are about 2nH(Y |X) output strings yn that could have reasonably come from xn. To ensure
decodability, we want these possible string sets for each distinct (typical) xn not to overlap. That
implies we can have at most 2nH(Y )/2nH(Y |X) = 2nI(I;Y ) codewords.

Today we prove the achievability portion of the theorem, and leave the converse to next time.

Lemma 7.2.1. C(N) ≥ maxπ I(I;Y ). That is, for any rate R < maxπ I(I;Y ), there exists an
encoding procedure that decodes with asymptotically vanishing error probability.

Proof. For the proof, we’ll switch back to π = π(x) being a distribution over x. We formalize
the above intuition by using relative entropy. Define qx(y) = N(y|x) just for notation and let
q(y) =

∑
x π(x)qx(y) be the marginal distribution on Y . Then

D(qx||q) =
∑
y

qx(y) log
qx(y)

q(y)
= −H(qx)−

∑
y

qx(y) log q(y). (7.103)

The relation between relative entropy of these distributions and mutual information becomes clear
when we sum over x:∑

x

π(x)D(qx||q) = −
∑
x

π(x)H(qx)−
∑
x,y

π(x)qx(y) log q(y) (7.104)

= −H(Y |X) +H(Y ) = I(X;Y ). (7.105)

Define xn(m) := Enc(m) and consider only xn(m) ∈ Tnπ the typical space, i.e. where i appears nπi
times. Then Nn(xn(m)) = qx1 ⊗ · · · ⊗ qxn , which up to permutation is q⊗nπ11 ⊗ · · · ⊗ q⊗nπdd . Note
that Nn(xn(m)) is itself a probability function and can be evaluated on strings and sets of strings,
so to avoid confusion we will write Nn(xn(m))[S] as the conditional probability of getting strings
in S as output given xn(m) as input. Since relative entropies add for independent distributions,

D(Nn(xn(m)), q⊗n) = nI(X;Y ). (7.106)

By Stein’s lemma from last lecture, there exists for any choices of ϵ, δ, a test set A(m) ⊆ [d]n such
that Nn(xn(m))[A(m)] ≥ 1− ϵ but qn(A(m)) ≤ 2−n(I(X;Y )−δ).

With these guarantees, we are ready to write down our encoding and decoding procedures. For
the encoding, for each m ∈ M , Alice chooses xn(m) ∈ Tπ (or, nearly equivalently, randomly from
πn). Note that the marginal probability holds as expected:

Exn(m)∼πnNn(xn(m)) ≈ q⊗n. (7.107)

To decode, Bob brute-force iterates through A(m), m ∈ M and outputs m when the test passes.
The probability the test fails is

Pr[error] = Pr[wrong test accepts] + Pr[right test rejects] (7.108)

≤ |M |2−n(I(X;Y )−δ) + ϵ. (7.109)

By construction, |M | = 2nR. Thus, if R < I(X;Y )− δ, the first term asymptotically vanishes and
so the error probability will asymptotically be ϵ, as desired.

7-3
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Scribe: Adam Wills and Daniel Lee Classical Messages over Quantum Channels

8.0 Lecture Outline

The aim of today’s lecture is to cover three things. First, we’d like to establish a quantum version
of Shannon’s noisy channel coding theorem that we discussed last time. In particular, we’d like
to discuss sending classical messages over quantum channels, and establish the rate at which we
can send information in such a situation. Having established the achievability of this, in a fairly
analogous way to what we did last time for Shannon’s noisy channel coding theorem, we will turn
to the converse for both Shannon’s noisy channel coding theorem and for this quantum situation.
We won’t have time to prove this completely, but as preparation for the upcoming proof, we will
introduce the Conditional Mutual Information (CMI).

8.1 Classical-Quantum (CQ) Channels

We will talk about channels with classical input and quantum output, otherwise known as CQ
channels; for example,

N : x 7→ ρx. (8.110)

These can be imagined as special cases of usual CPTP quantum channels, for example,

N (|x⟩ ⟨y|) = δxyρx. (8.111)

This also corresponds to a quantum channel which measures its input, before sending on some quan-
tum states dependent on the outcome of this measurement. By specialising to classical-quantum
channels, we avoid many of the difficulties experienced with general quantum-quantum channels,
represented by a general CPTP map, for which entangled inputs are allowed, and many results
become very hard to prove.

8.1.1 The HSW Theorem

The HSW Theorem tells us the capacity of such a channel. It is

C(N ) = max
p
I(X : Q)ω, (8.112)

where the maximum is taken over all probability distributions p, and ω is the “classical-quantum
state”

ωXQ =
∑
x

p(x) |x⟩ ⟨x|X ⊗ ρQx . (8.113)

Comments:

1. As a special case, if ρx is diagonal, then this reduces to Shannon’s noisy channel coding
theorem.
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2. We have I(X : Q) = S(Q) − S(Q|X) as always. It’s worth appreciating that asking for the
entropy of Q conditioned on X makes more sense for this state than for a general quantum
state; conditioning on the outcome of some classical random variable is much more meaningful
than conditioning on some quantum state. Notice that

I(X : Q)ω = S(ρ)−
∑
x

p(x)S(ρx) (8.114)

where ρ =
∑

x p(x)ρx is the average state. It is common to denote a quantity called Holevo’s
χ-quantity as

χ(N ) = max
p

[
S(ρ)−

∑
x

p(x)S(ρx)

]
, (8.115)

so that C(N ) = χ(N ).

3. As is typically the case, the theorem comes with an achievability part and a converse, so a full
proof shows that information transmission at a rate of C(N ) is possible, and that attempting
to transmit information at any faster rate will fail (i.e. the error rate in communication will
become large).

4. The HSW theorem has an interesting relation to the scenario of accessible information. Sup-
pose Alice wants to send classical information to Bob via a quantum channel. She wishes to
encode some input x, corresponding to the value of some random variable X ∼ p, into some
quantum state ρx which then gets sent to Bob. Bob then tries to learn about x by performing
some measurement {My}y and deducing the outcome y as a result, with the hope that y = x.

This whole thing can be considered as a classical channel, and the corresponding mutual
information (maximised over the best possible measurement by Bob) is known as the accessible
information of the ensemble {px, ρx}:

Iacc({px, ρx}) = sup
{My}y

I(X : Y ). (8.116)

It is true in general that

Iacc({px, ρx}) ≤ S(ρ)−
∑
x

p(x)S(ρx). (8.117)

Example 8.1.1. Consider a C-Q channel that sends the classical input i to the quantum output
ρi for i = 1, 2, 3. Suppose the ρi are pure qubit states lying in the equator of the Bloch sphere
(see Figure 8.4), and the three of them are mutually equally spaced. In this case, we have that the
average state ρ is the maximally mixed state, and so S(ρ) = 1. We also have that the entropy of each
individual state is 0 (because the states are pure). As such, we have C(N ) = 1. We might consider
this to be somehow surprising, because given only one transmission of ρ1, ρ2, ρ3, it is impossible
to reliably distinguish between them. However, the definition of C(N ) is an asymptotic statement.
We are seeing that asymptotically, N is as good as a classical noiseless channel just transmitting
one bit.

This is already giving us the indication that to get the most out of this communication scenario,
the receiver, Bob, must perform entangled measurements on the outputs of the n uses of the channel

ρx1 ⊗ ρx2 ⊗ . . .⊗ ρxn . (8.118)
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Figure 8.4: Three pure states on the equator of the Bloch sphere, which average to the maximally
mixed state

8.2 Quantum-Quantum Channels

We will quite shortly go on to prove the achievability portion of the HSW theorem, and then
direct ourselves towards the converse. First, however, let us make some comments on general
quantum-quantum channels, which are in general harder to deal with.

A general quantum-quantum channel is represented by a CPTP map N , and in this case we
define the χ-quantity as

χ(N ) = max
{px,σx}

I(X : Q)ω, (8.119)

where
ω =

∑
x

px |x⟩ ⟨x| ⊗ N (σx). (8.120)

The capacity of the channel is then in fact

C(N ) = lim
n→∞

1

n
χ(N n). (8.121)

It is an interesting and very much non-trivial fact, known as the superadditivity of quantum channel
capacity, that in general one can send more information through a channel N by sending entangled
inputs through multiple uses of it, then just using it separately multiple times, i.e., C(N ) > χ(N )
in general.

Comments:

1. The above formula for quantum channel capacity is very hard to work with in practice. To see
this, let us start by considering the formula given by the HSW theorem. This is a relatively
easy expression to work with, because it is a maximisation of a concave function (I(X : Q)ω)
over a convex set (the set of probability distributions). This makes it easy to prove things
about in theory, and also our computers can handle it easily with standard optimisation
techniques.

Conversely, the general quantum channel capacity is not a maximisation of a concave function.
It is in fact NP-hard in general to computationally find the maximising solution of χ(N ), so
we do not expect to find efficient techniques for performing this optimisation.
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2. By applying this formula to a noiseless qubit channel, one can see that it is impossible
to reliably send more than n bits of information in n qubits, despite the fact that a full
description of an n-qubit state requires 2n complex numbers. Qubits are therefore no better
carriers of information than classical bits, even if they are better at certain other tasks, like
secret sharing.

8.3 Proof of Achievability for the HSW Theorem

To prove the achievability part of the HSW theorem, we want another tool.

8.3.1 Non-Commutative Union Bound

Classically, suppose we have some bad events that are unlikely to happen. Via the standard union
bound, it is easy to say that the probability that at least one bad event happens is the sum of the
probabilities of all the individual bad events.

Quantumly, the analogous question might be to consider some density matrix ρ and some two-
outcome measurements, each corresponding to operators {Pi, I − Pi} for i = 1, . . . , l. Supposing
that each Pi is fairly likely to be measured, what is the probability of measuring all P1, . . . , Pl on
ρ sequentially? We cannot just use the classical case because the state gets disturbed with each
measurement. The statement of the lemma is this.

Lemma 8.3.1. If ρ ≥ 0, Tr(ρ) ≤ 1, and P1, . . . , Pl are projectors, then

Tr(ρ)− Tr(P1, . . . PlρPl . . . P1] ≤ 2

√√√√ l∑
i=1

Tr((I − Pi)ρ) (8.122)

8.3.2 Remainder of the Proof

Let p achieve the maximum in
C(N ) = max

p
(I(X : Q))ω. (8.123)

Just as in the classical case, let us take a random codebook, so Alice chooses some codewords

Xn(1), . . . , Xn(M) ∼ pn (8.124)

identically and independently. For each m ∈ [M ], the state Bob receives is

σm = ρX1(m) ⊗ . . .⊗ ρXn(m), (8.125)

where Xi(m) is the i-th symbol in the codeword corresponding to m ∈ [M ]. Notice that if you
average over the choice of codeword Xn(m), you get

EXn(m)σm =

(∑
x

p(x)ρx

)⊗n
= ρ⊗n. (8.126)

Let us define the conditionally typical projector Πm, for σm. Letting t be the type of Xn(m)4, Πm
is defined by

Πm = Π
d⊗
i=1

Πntiρi,δ
Π−1, (8.127)

4It is worth appreciating that the type of Xn(m) will be very close to p (for large n).
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where Π is the permutation mapping the states ρi as they appear in ascending order corresponding
to the type, to the order in which they appear in σm, i.e. it maps

d⊗
i=1

ρntii 7→
n⊗
i=1

ρXi(m) = σm. (8.128)

Since Πm is a typical projector for σm, we have that

Tr(Πmσm) ≥ 1− ϵ (8.129)

for each m.
In complete analogy to Bob’s decoding procedure for Shannon’s noisy channel coding theorem,

Bob will do nothing other than to sequentially measure Π1,Π2, . . . , and accept the first m ∈ [M ]
for which the measurement of Πm succeeds. We know that the chance of making the correct
measurement is high, since

Tr(Πmσm) ≥ 1− ϵ (8.130)

for each m. Let us consider the chance of failure. The non-commutative union bound justifies
taking an upper bound for the chance of making the wrong measurement on a message m as simply
the sum of making the wrong measurement Πm̂ on σm for each m̂ ̸= m (because we can ignore
the factor of two and the square-root, because they asymptotically make no difference to the rate).
The expectation (taken over all codebooks) of making the wrong measurement on a message m is∑

m̂:m̸̂=m
EXn(m),Xn(m̂)Tr(Πm̂σm) =

∑
m̂:m̸̂=m

EXn(m̂)Tr(Πm̂ρ
⊗n) (8.131)

= (M − 1)︸ ︷︷ ︸
2nR−1≈2nR

exp

−
d∑
i=1

ntiD(ρi||ρ)︸ ︷︷ ︸
−nI(X:Q)

 (8.132)

≈ 2nR2−nI(X:Q), (8.133)

so that indeed if R < I(X : Q), then the probability of making the wrong measurement on m goes
to zero. We need to, however, justify the claim that

−
d∑
i=1

ntiD(ρi||ρ) ≈ −nI(X : Q). (8.134)

This is done quite straightforwardly, however, from the relation

I(X : Q)ω =
∑
i

p(i)D(ρi||ρ) (8.135)

and then the argument

|
∑
i

ntiD(ρi||ρ)−
∑
i

np(i)D(ρi||ρ)| ≤ n ||t− p||︸ ︷︷ ︸
Small with high probability

max
i
D(ρi||ρ)︸ ︷︷ ︸
≤log d

. (8.136)

This concludes the proof, although we comment that making this fully rigorous would mean taking
care of various details that have been omitted. For example, taking the average over all codebooks
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in the probability of making the wrong measurement only means that some codebook would work
- we must fix such a codebook. Also, the last statement that ||t− p|| is small with high probability
is true, although we would need to get rid of all the m’s for which this is large. By standard
arguments that are very similar to that made last time (for the classical case), this does not mean
getting rid of too many messages m.

This concludes our discussion of the proof of achievability.

8.4 Towards a Converse

We will not have full time to prove a converse in this lecture but will start to develop the tools to
support the subsequent proof.

8.4.1 Fano’s Inequality and Fannes’ Inequality

If M and M̂ are two random variables (over the same alphabet) that are very likely to be equal,
then their conditional entropy is small. In particular, suppose that M and M̂ are random variables
over the set {0, 1}nR. Then

P[M ̸= N̂ ] ≤ ϵ =⇒ H(M |N̂) ≤ ϵnR+ 1. (8.137)

Proof. Let p be the distribution for M given M̂ . Then, letting η be the probability that M does
not equal M̂ (η ≤ ϵ), we have

p = (1− η)1M̂ + ηq, (8.138)

where 1M̂ is the distribution concentrated on the value of M̂ , and q is some distribution with

q(M̂) = 0. From this, we compute the entropy of p as

−(1− η) log(1− η)−
∑
x

ηq(x)(log η + log q(x)) = H2(η)︸ ︷︷ ︸
≤1

+ η︸︷︷︸
≤ϵ

H(q)︸ ︷︷ ︸
≤nR

, (8.139)

which concludes the proof.

A further useful result is that of Fannes’ Inequality, which we will not prove. This says that

|S(ρ)− S(σ)| ≤ H2(ϵ) + ϵ log d, (8.140)

where

ϵ =
1

2
||ρ− σ||1(= T (ρ, σ)). (8.141)

Note that this can be interpreted as a continuity statement for the von Neumann entropy S.

8.4.2 Conditional Mutual Information and Markov Chains

Another very useful tool for the proof of the converse will be that of the conditional mutual
information (CMI), which relates closely with the theory of Markov Chains. The CMI of two
random variables X and Y given the random variable Z is the mutual information between the
random variables X and Y averaged over the output of Z being fixed, i.e.,

I(X : Y |Z) :=
∑
z

pZ(z)I(X : Y |Z = z) (8.142)

= H(X|Z) +H(Y |Z)−H(XY |Z) (8.143)

= H(XZ) +H(Y Z)−H(XY Z)−H(Z). (8.144)



Figure 8.5: Mutual information and conditional mutual information as venn diagrams

These relations can be understood via Venn diagrams (Figure 8.5)
Whereas I(X : Y ) may be interpreted as a measure of the correlation between X and Y ,

I(X : Y |Z) may be interpreted as the correlation between X and Y that remains once you have
conditioned on Z. To illustrate this interpretation, we note that I(X : Y |Z) = 0 if and only if the
sequence

X → Z → Y (8.145)

forms a Markov Chain.

8-7



Lecture 9: October 3rd 2024 9-1

8.372 Quantum Information Science III Fall 2024

Lecture 9: October 3rd 2024

Scribe: Adam Wills Converse to Channel Capacity Theorems and Applications

9.0 Recap from Last Time

Last time we started the proof of the converse of our channel capacity theorems, both for the
classical channel capacity (Shannon’s noisy channel coding theorem) and for CQ channels (the
HSW theorem). We started to make preparations in this direction by stating Fano’s inequality, and
we started to discuss the conditional mutual information (CMI). We will continue these discussions
now to prove the converse.

9.1 Proof of the Converses

Let us start by considering the general encode - channel - decode scenario:

M
Encode−→ Xn Channel−→ Y n Decode−→ M̂ (9.146)

In a successful protocol, we have that the probability M and M̂ differ is at most ϵ. Also, as usual,
we say that the alphabet from which M is drawn is of size 2nR. We can make a first step in our
proof of a converse by applying Fano’s inequality. Considering a uniformly random initial message,
M , we have H(M) = nR. Then, the mutual information between M and M̂ is

I(M : M̂) = H(M)−H(M |M̂) ≥ (1− ϵ)nR− 1, (9.147)

where we have applied Fano’s inequality. We wish to turn this into a statement about the mutual
information between Xn and Y n, and for this we will talk about the CMI.

9.1.1 Conditional Mutual Information (CMI)

Either quantumly or classically, we can define the CMI as

I(X : Y |Z) = H(XZ) +H(Y Z)−H(XY Z)−H(Z), (9.148)

where quantumly the H’s are replaced by S’s. Classically we can re-write this definition as

I(X : Y |Z) =
∑
z

I(X : Y |Z = z)pZ(z), (9.149)

although conditioning in this way doesn’t make sense quantumly. It’s interesting to notice that this
expression means that showing the CMI is non-negative classically is no harder than showing the
regular mutual information is non-negative, but because this expression isn’t meaningful quantumly,
one must work a little harder to show non-negativity of CMI quantumly.

With a little rearrangement of entropies, one can quickly see that

I(X : Y |Z) = I(X : Y Z)− I(X : Z), (9.150)
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for which the further rearrangement

I(X : Y Z) = I(X : Y |Z) + I(X : Z) (9.151)

gives us the “chain rule” of mutual information. These expressions lend further weight to the
interpretation of the CMI I(X : Y |Z) as the amount of information shared by X and Y once you
have conditioned on Z. The equation (9.150) tells us that I(X : Y |Z) is the amount of information
X knows about Y Z that it doesn’t already know about Z. Therefore, I(X : Y |Z) is zero if and only
if all of the interactions between X and Y are mediated by Z, which says exactly that X → Z → Y
forms a Markov chain, as stated last time. Classically, this is easy to prove, whereas quantumly we
take it as the definition of a quantum Markov chain.

Let us put some more meat on this Markov chains idea in the classical case. We have

I(X : Y |Z) = 0 ⇐⇒ X → Z → Y is a Markov chain (9.152)

⇐⇒ p(x, y, z) = p(z)p(x|z)p(y|z) = p(x)p(z|x)p(y|z) (9.153)

⇐⇒ p(x, y, z) = f(x, z)g(y, z) (9.154)

for some functions f, g. There is a corresponding robustness statement, which is

I(X : Y |Z)p = min
q:q is a Markov Chain

D(p||q), (9.155)

so that if the joint distribution of X, Y and Z is near a Markov chain (in relative entropy), then
the CMI is small. This fits into our general family of similar statements:

H(X) ≈ 0 ⇐⇒ X nearly deterministic (9.156)

S(ρ) ≈ 0 ⇐⇒ ρ nearly pure (9.157)

H(X|Y ) = 0 ⇐⇒ X is a deterministic function of Y (9.158)

S(X|Y ) = 0 is an exception — no special meaning! (9.159)

D(ρ||σ) ≈ 0 ⇐⇒ ρ is almost σ (9.160)

We can also provide a physical interpretation to the CMI being zero. Thinking of the random
variables as physical systems interacting, we find that if I(X : Y |Z) = 0 then the chain X −Z − Y
has only local interactions. Thinking in terms of statistical mechanics, their probability distribution
factorises into two Gibbs distributions:

p(x, y, z) =
e−E1(x,z)−E2(y,z)

Z
. (9.161)

This idea extends to more general networks. Suppose we have physical systems X,Z, Y and W
interacting locally via the network shown in the Figure. Removing the system Z, or conditioning

X Z Y

W

Figure 9.6

on it, leads to X and W being independent, meaning that the CMI I(X : W |Z) is zero — all
interactions between X and W are mediated (in some way) by Z.



Lecture 9: October 3rd 2024 9-3

Note that not all our discussion of CMI extends to the quantum case. Again, our definition of a
quantum Markov chain is simply a state whose CMI is zero, and it is harder to make a robustness
statement like Equation (9.155) in the quantum case. Again, non-negativity of CMI is true, but
harder to prove. To do so, let us discuss the Data Processing Inequality.

9.1.2 Data Processing Inequality

We will see more on the DPI shortly, but our first form of the DPI will be a classical statement
about the Markov chain X − Z − Y , for which we have

I(X : Z) ≥ I(X : Y ), (9.162)

i.e., the information shared between X and Z is always at least the information shared between X
and Y . This is easily proved using the non-negativity of CMI.

Proof.

I(X : Z) = I(X : Y Z)− I(X : Y |Z) (9.163)

I(X : Y ) = I(X : Y Z)− I(X : Z|Y ) (9.164)

and so
I(X : Z)− I(X : Y ) = −I(X : Y |Z) + I(X : Z|Y ). (9.165)

We know the first term is zero using the fact that X−Z−Y forms a Markov chain, and the second
term is non-negative, giving the conclusion.

9.1.3 Strong Subadditivity

Showing that the CMI is non-negative quantumly is harder than classically, and is equivalent to
the statement of strong subadditivity, which is the statement that

S(XZ) + S(Y Z) ≥ S(XY Z) + S(Z), (9.166)

which is stronger than the usual statement of subadditivity, which recall is

S(X) + S(Y ) ≥ S(XY ), (9.167)

which itself is equivalent to the regular mutual information being non-negative. The non-negativity
of the quantum CMI was initially proved by Lieb and Ruskai in the 70s, which is a different proof
to what we show now.

We want to use the fact that, given a quantum operation E ,

D(E(ρ)||E(σ)) ≤ D(ρ||σ). (9.168)

This actually follows immediately from our proof of the operational interpretation of D(ρ||σ) as the
optimal rate at which ρ and σ can be distinguished in an asymmetric hypothesis test. When trying
to distinguish ρ and σ, one thing you could do is apply E to both of them, and then distinguish
the resulting states. This immediately gives us this monotonicity statement.

Applying this with E a partial trace over the system Y , we have

I(X : Z) = D(ρXZ ||ρX ⊗ ρZ) ≤ D(ρXY Z ||ρX ⊗ ρY Z) = I(X : Y Z), (9.169)

and the result follows.
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9.1.4 Back to Channel Capacities

Recall we have the dependence diagram of random variables

X1 Y1

X2 Y2

M
...

... M̂

...
...

Xn Yn

which can also be simplified to
M → Xn → Y n → M̂. (9.170)

We were up to the point in the proof of the converse where we had (1− ϵ)nR− 1 ≤ I(M : M̂), and
then using DPI twice gives I(M : M̂) ≤ I(Xn : Y n). We then use

I(Xn : Y n) ≤
n∑
j=1

I(Xj : Yj) (9.171)

which we will show to be true momentarily. The proof of the converse follows immediately, since
we find that we have

(1− ϵ)nR− 1 ≤ nmax
p
I(X1 : Y1)p, (9.172)

so that we find that R is indeed at most the claimed capacity

C(N ) = max
p
I(X : Y )p. (9.173)

Let us now prove the claim of Equation (9.171).

Proof.

I(Xn : Y n) = H(Y n)−H(Y n|Xn) (9.174)

≤
n∑
j=1

H(Yj)−H(Y n|Xn) (9.175)

by subadditivity. Then, by a chain rule/telescoping sum,

H(Y n|Xn) =

n∑
j=1

H(Yj |XnY1Y2 . . . Yj−1). (9.176)

Referring to our dependency diagram, we can see that once we condition onXj , further conditioning
via the other X ′s or any other Y ’s does not change the distribution of Yj (this is the definition of
such dependence). We therefore have

H(Yj |XnY1Y2 . . . Yj−1) = H(Yj |Xj). (9.177)
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In total,

I(Xn : Y n) ≤
n∑
j=1

H(Yj)−H(Yj |Xj) =
n∑
j=1

I(Xj : Yj). (9.178)

This concludes our proof of the converse for Shannon’s noisy channel coding theorem.

9.1.5 Converse to the HSW Theorem

It turns out that the above argument goes straight through to the case of classical-quantum channels
relevant to the HSW theorem, because the inputs are classical. The system Y n becomes the
quantum system Qn, and we have

I(Xn : Qn) = S(Qn)− S(Qn|Xn) (9.179)

≤
∑
j

S(Qj)− S(Qj |Sj) (9.180)

≤ nχ, (9.181)

where χ = maxp I(X : Q)ω, and we recall the classical-quantum state

ωXQ =
∑
x

p(x) |x⟩ ⟨x|X ⊗ ρQx . (9.182)

This only goes through because the system X is classical - so conditioning on it is sensible. This
argument does not go through in the case of entangled inputs, i.e., for a general quantum-quantum
channel.

9.2 General Quantum Channels

For a general quantum channel given by the CPTP map N , the capacity is in fact

C(N ) = lim
n→∞

1

n
χ(N⊗n), (9.183)

where
χ(E) = max

{p(x),σx}
I(X : Q)ω, (9.184)

for ω =
∑

x p(x) |x⟩ ⟨x|
X ⊗ N (σx)

Q. The limit in the formula reflects the fact that in general the
quantum capacity is super additive, i.e., χ(N ⊗M) ≥ χ(N ) + χ(M) always, and there are cases
where this inequality is strict. This makes the formula quite difficult to work with, a fact also
reflected by the optimisation problem contained in it being NP-hard to solve in the worst case.
There are, however, several natural cases in which the quantum capacity is additive, meaning that
χ(N⊗n) = nχ(N ), and in these cases the formula becomes much easier to work with. Let us state
some examples.

1. For entanglement-breaking channels, also called QCQ channels, or measure-and-prepare chan-
nels, the capacity is additive. These are channels of the form

N(ρ) =
∑
k

Tr(ρMk)σk (9.185)
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for some measurement {Mk} and states σk. Note that these are more general than CQ
channels, for which the first measurement is in the computational basis.

2. Depolarising channel

N (ρ) = (1− p)ρ+ p
I

d
. (9.186)

3. Erasure channel
N (ρ) = (1− p)ρ+ p |e⟩ ⟨e| , (9.187)

where |e⟩ is some erasure symbol.

4. Unital qubit channels (such channels satisfy N (I) = I and have one qubit as their input and
output).

5. Pure Loss Bosonic Channels. A Bosonic channel can be thought of as acting on the Hilbert
space of a harmonic oscillator.

9.3 Random Access Coding

A natural application of these ideas comes in random access coding, specifically the related quantum
no-go theorem. The task is as follows. Suppose Alice wishes to encode m bits xm ∈ {0, 1}m in an
n-qubit quantum state ρx. She sends this to Bob. Bob wishes to retrieve just one of the bits, of his
choosing, say i, by performing a measurement. He learns some bit x̂i by performing a measurement,
and the hope is that x̂i = xi. One naturally asks to what extent this can be done reliably with
various values of n and m.

At finite lengths, you can do a little better with quantum states than you can do classically.
For example, clearly, if you encode 2 bits into 1 bit, there is only a 50% probability that Bob can
learn a bit of his choosing. However, suppose that Alice encodes 00 into |0⟩, 01 into |+⟩, 10 into
|−⟩ and 11 into |1⟩. Then, if Bob wishes to learn the first bit, he needs to distinguish

|0⟩ ⟨0|+ |+⟩ ⟨+|
2

from
|−⟩ ⟨−|+ |1⟩ ⟨1|

2
(9.188)

and if he wishes to learn the second bit, he needs to distinguish

|0⟩ ⟨0|+ |−⟩ ⟨−|
2

from
|+⟩ ⟨+|+ |1⟩ ⟨1|

2
, (9.189)

and in both cases he can succeed with probability cos2 π/8 > 0.5. Asymptotically, however, it turns
out that he can essentially do just as well.

9.3.1 Nayak’s No-Go Theorem

Theorem 9.3.1. If any bit can be retrieved with probability ≥ 1− ϵ, then n ≥ m(1−H2(ϵ)).

To prove this, the following will be very useful.

Lemma 9.3.1. Given states σ0, σ1 and a measurement {M0,M1} which is good at distinguishing
them, i.e., Tr(Mbσb) ≥ 1− ϵ for each b, then

S(σ) ≥ S(σ0) + S(σ1)

2
+ 1−H2(ϵ), (9.190)

where

σ =
σ0 + σ1

2
. (9.191)



Proof. To prove the lemma, let us define the CQ state

ρXQ =
|0⟩ ⟨0| ⊗ σ0 + |1⟩ ⟨1| ⊗ σ1

2
(9.192)

for which we know that

I(X : Q) = S(σ)−
(
S(σ0) + S(σ1)

2

)
. (9.193)

Considering the CQ channel/measure scenario

X −Q−B (9.194)

given by
x 7→ σx 7→ b, (9.195)

we know from the converse of the HSW theorem that the mutual information between X and B is
at most I(X : Q)ρ:

I(X : B) ≤ I(X : Q)ρ. (9.196)

However, since I(X : B) agree with probability at least 1− ϵ, we have I(X : B) ≥ 1−H2(ϵ), from
which the result follows.

Finally, we can prove Nayak’s No-Go Theorem.

Proof. We define the CQ state

ρ =
1

2m

∑
x∈{0,1}m

|x⟩ ⟨x|X ⊗ ρQx . (9.197)

Then, we know that there is a measurement that is good at distinguishing the cases of xk+1 being
0 or 1. The lemma then tells us that

S(Q|X1 . . . Xk) ≥ S(Q|X1 . . . Xk+1) + 1−H2(ϵ), (9.198)

because S(Q|X1 . . . Xk) is the entropy of the state averaged over the values ofXk+1, and S(Q|X1 . . . Xk+1)
is the average of the entropies over the values of Xk+1. Iterating this gives

S(Q) ≥ m(1−H2(ϵ)), (9.199)

and we conclude via the observation that n ≥ S(Q), since Q is an n-qubit register.

9-7
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Scribe: Jin Ming Koh State learning and tomography

10.1 Recap & Introduction

The random-access-code (RAC) no-go theorem from last lecture says that any mechanism storing
m bits of information in n qubits, conceptualized as a quantum map {0, 1}m → n qubits, that allows
the retrieval of any bit with probability ≥ 1− ϵ must satisfy n ≥ m [1−H(ϵ)].

From a resource perspective, we can write N ≥ C(N ) for a channel N with capacity C(N ).
This means that each use of the channel sends C(N ) bits of classical information (cbits). Intuitively,
the ≥ sign here signifies “power” in the resource sense—the left-hand side can be used to achieve
all the same things as the right-hand side can.

The reverse Shannon theorem says that C(N ) + [some rbits] ≥ N , where rbits are shared
pairs of random bits. The ≥ sign tells us we can simulate the channel N with the resources on
the left-hand side. For example, [1 − H(ϵ)] cbits + [some rbits] ≥ BSCϵ, where BSCϵ is the binary
symmetric channel with error probability ϵ.

There is a hierarchy of resource inequalities. An rbit is the weakest. Sharing a maximally
entangled pair (ebit), and transmission of a cbit, are stronger than an rbit. The transmission of a
qubit is the strongest.

10.2 Quantum State Learning

Definition 10.2.1 (Quantum state learning task). We are given an unknown state ρ on n qubits,
and an unknown distribution D of 2-outcome measurements {M, I−M}. We want to learn ρ, that
is, to be able to predict the outcomes of measurements in D.

Theorem 10.2.1 (Quantum state learning sample complexity). The quantum state learning task
can be accomplished with O

(
1/ϵ2

)
samples, for an acceptable error tolerance ϵ.

To be clear, in the quantum state learning task, we are given the data

(M1, O1 ∼ tr[M1ρ]), (M2, O2 ∼ tr[M2ρ]), . . . (10.200)

to learn from. We can think of ρ as a map M → [0, 1], where M is a measurement operator.

10.2.1 Proof of sample complexity

To simplify our analysis, we shall assume that the measurement expectation values tr[Mρ] ≈ 0 or
tr[Mρ] ≈ 1. More precisely, either tr[Mρ] ≤ ϵ or tr[Mρ] ≥ 1− ϵ.

Definition 10.2.2 (VC dimension). The VC dimension of a set of states S is the largest set of
measurements that is shattered by S

Definition 10.2.3 (Shattering). We say that M1, . . . ,Md is shattered if for all O1, . . . , Od ∈ {0, 1}
there exists ρ such that tr[ρMj ] ≈ Oj for all j ∈ [d].
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Example 10.2.1. We ask given measurement operators 0 ≤M1, . . . ,Md ≤ I, for all O1, . . . , Od ∈
{0, 1}, does there exist a ρ such that tr[ρMj ] ≈ Oj for all j ∈ [d]. The answer is in the positive for

M1 =
I + Z1

2
, M2 =

I + Z2

2
, . . . . (10.201)

That is, this example of M1, . . . ,Md is shattered.

Remark 10.2.1. Observe that if M1, . . . ,Md is shattered then it defines a RAC. We consider the
map {0, 1}d → ρ, and we can concoct a ρ that returns the bitstring to be accessed upon measurement.
This tells us

d ≤ n

1−H(ϵ)
. (10.202)

This implies that ρ can be learnt with O
(
n/ϵo(1)

)
samples. To formally show this, one can use

a theorem that says a concept class can be learnt with O(VC dimension of class) samples.

10.3 State Tomography

Definition 10.3.1 (State tomography task). Let ρ be a d× d density matrix. Given ρ⊗n, we want
to output a description of ρ̂ such that

1

2
∥ρ− ρ̂∥1 ≤ ϵ, (10.203)

for an acceptable error tolerance ϵ.

Remark 10.3.1. The trace distance used in the quality criteria of state tomography means that
we want ρ̂ to be accurate across all measurements. This is stringent and is essentially a worst-case
assurance. In comparison, quantum state learning concerns average-case error over the distribution
of measurements D.

Example 10.3.1. In the d = 2 case,

ρ =
I +

∑3
j=1 αjσj

2
, (10.204)

where coefficients αj = tr[ρσj ]. So we measure each σj n/3 times, to get estimates

α̂j = αj +O
(

1√
n

)
. (10.205)

Then

ρ− ρ̂ =

3∑
j=1

(αj − α̂j)
σj
2

=⇒ ∥ρ− ρ̂∥1 ∼
1√
n
. (10.206)

Therefore we need number of samples n ∼ 1/ϵ2 to get within error tolerance ϵ.

Theorem 10.3.1 (State tomography sample complexity). The state tomography task can be ac-
complished with O

(
d2/ϵ2

)
samples.

Remark 10.3.2. In d dimensions, a density matrix has d2 − 1 real degrees of freedom, which
matches the d2 in the sample complexity. Note that this is much worse than quantum state learning,
which had sample complexity going as O(log d).

Theorem 10.3.2 (State tomography single-copy sample complexity). The state tomography task
can be accomplished with O

(
d3/ϵ2

)
samples using single-copy measurements only.



10.3.1 Proof of sample complexity

Today we show n ≳ d2/ϵ2. The idea is to construct ρ1, . . . , ρM satisfying the following properties:

1. Well-separated.

1

2
∥ρx − ρy∥1 ≥

ϵ

10
∀ x ̸= y. (10.207)

2. High entropy.

S(ρx) ≥ log d−O
(
ϵ2
)
. (10.208)

3. Many states.

M = exp
(
cd2
)
, (10.209)

where c > 0 is a constant.

Remark 10.3.3. Can we really obtain M = exp
(
cd2
)
many states? The volume of an ϵ-ball in d

dimensions goes as ϵd−1, so maybe we can.

The implication of ρ1, . . . , ρM is that, if we can perform state tomography on them with accuracy
ϵ/20 and failure probability < δ, then we can distinguish the different ρ⊗nx . We can take the
description ρ̂ to be the x labels, and this satisfies the quality criteria of the state tomography task.

We should imagine the pipeline

x ∈ [M ] −→ ρ⊗nx −→ ρ̂ −→ x. (10.210)

We start by writing

I(X; X̂) ≥ (1− δ) logM − 1 ≥ cd2, (10.211)

where the second inequality is due to Fano’s inequality. Also, supposing that ρ̂⊗n lives on Qn =
Q1Q2 . . . Qn, we can write

I(X; X̂) ≤ I(X;Qn) ≤ nI(X;Q1). (10.212)

But

I(X;Q1) = S

(
1

M

∑
x

ρx

)
︸ ︷︷ ︸

≤log d

− 1

M

∑
x

S(ρx) ≤ O
(
ϵ2
)
. (10.213)

Putting the inequalities together, we conclude n ≳ d2/ϵ2 as desired.

Remark 10.3.4. What about the high entropy condition? Can that really be satisfied? Yes it can,
by a short argument below.

Lemma 10.3.1. There exists d×d unitaries U1, . . . , UM whereM = exp
(
cd2
)
, and a fixed projector

Π with rank d/2, such that for all x ̸= y,∥∥∥∥Ux Π

d/2
U †x − Uy

Π

d/2
U †y

∥∥∥∥
1

≥ 1

10
. (10.214)

Proof. Simply choose the U1, . . . , UM randomly.

Then, using this lemma, we choose

ρx = (1− ϵ)I
d
+ ϵUx

Π

d/2
U †x. (10.215)

The eigenvalues of ρx are then (1± ϵ)/d, and S(ρx) = log d−O
(
ϵ2
)
as desired.

10-3



Lecture 11: October 10, 2024 11-1

8.372 Quantum Information Science III Fall 2024

Lecture 11: October 10, 2024

Scribe: Louis Marquis Quantum Sensing and Fisher Information

11.1 Quantum Sensing

We have previously applied Holevo Information and relative entropy to classical information theory
problems like hypothesis testing, channel encoding, and state tomography. We will now apply it to
quantum sensing, which is a variant of state tomography.

Suppose that we have a magnetic field with unknown magnitude B and an electron (comprising
a qubit), which results in the following Hamiltonian.

H =
B

2
Z (11.216)

If there are N such particles, the total Hamiltonian is the sum of the individuals.

H =
N∑
i=1

B

2
Zi (11.217)

The goal is to estimate B as precisely as possible. We wish to determine the a informationally-
theoretic limit on such a precision.
A first attempt on the one-qubit scenario may involve evolving the state |+⟩ with the Hamiltonian
H, then measuring in the {|+⟩ , |−⟩} basis after time t. Denote ϕ = Bt.

e−iHt |+⟩ = 1√
2
(e−

iϕ
2 |0⟩+ e

iϕ
2 |1⟩) (11.218)

| ⟨+| e−iHt |+⟩ |2 = | ⟨+| 1√
2
(e−

iϕ
2 |0⟩+ e

iϕ
2 |1⟩)|2 = cos2

ϕ

2
(11.219)

Let random variable X represent the sign of the measured state. That is, X = 1 if |+⟩ is measured,
and X = −1 if |−⟩ is measured. Clearly, the expected value is E(X) = cos2 ϕ2 − sin2 ϕ2 = cosϕ. If
the experiment is repeated many (N) times, the average X should approach the expected value X̄,
allowing an estimate ϕ (and in turn B).

x̄ =

∑N
i=1Xi

N
(11.220)

ϕ = arccos x̄ (11.221)

B =
ϕ

t
(11.222)

We want to estimate the uncertainty of B. We can calculate the uncertainty ∆x, which we define
as the standard deviation of x. Then the uncertainty can be propogated over to get ∆B.

∆x = σ(X) =
√
E(X2)− E(X)2 =

√
1− cos2 ϕ = | sin(ϕ)| (11.223)
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∆x̄ = σ(

∑N
i=1Xi

N
) =

σ(X)√
N

=
| sin(ϕ)|√

N
(11.224)

∆ϕ =
∆x̄

| dx̄dϕ |
=

| sin(ϕ)|√
N

| sinϕ|
=

1√
N

(11.225)

∆B =
∆ϕ

t
=

1√
Nt

(11.226)

Particularly remarkable about this result is that neither ∆ϕ nor ∆B depend on anything besides
B and t, including anything relating to phase. This means that the experiment is equally precise
regardless of the phase of the starting state.
1√
N

is referred to as the standard quantum limit (SQL), or the shot-noise limit.

This first attempt consisted of independent measurements of N different qubits. A better precision
can be achieved by entangling the qubits first into the cat state. In practice, the cat state is more
vulnerable to noise but we can ignore this aspect for now. We evolve this state with the N qubit
Hamiltonian.

e−iHt
1√
2
(|0⟩⊗N + |1⟩⊗N ) = 1√

2
(e−

iϕN
2 |0⟩⊗N + e

iϕN
2 |1⟩⊗N ) (11.227)

We notice that the phase shift increases by a factor of N (relative to the first attempt), but this
time we only run the multi-qubit experiment once (instead of the single-qubit one N times). This
allows a quick calculation of the new precision.

∆B =
1

Nt
(11.228)

This is referred to as the Heisenberg limit, as it parallels the Heisenberg Uncertainty Principle.

11.2 Hamiltonian Learning

The problem of quantum sensing is a specific case of the more general problem of Hamiltonian
learning, in which the Hamiltonian. In theory, the maximally general Hamiltonian can have 4N

unknown parameters, but such a problem isn’t very useful nor interesting. In Hamiltonian learning,
we know the general structure of the Hamiltonian as the linear combination of a set of terms {hi}
and seek the specific parameters {bi ∈ R} of this combination.

H =
∑
i

βihi (11.229)

In this problem, one must prepare a state, evolve it with the Hamiltonian, and measure it to gain
information on {hi}.
Alternatively, one might be given the Gibbs state for a Hamiltonian e−

H
T

tr

(
e−

H
T

) and must determine

{hi} by measuring the state. This problem is also referred to as Hamiltonian learning.
However, Hamiltonian learning is a very complicated topic since there are so many strategies that
can be considered. So for the rest of this lecture, we will focus on a simpler problem called parameter
estimation from states. This problem is simple enough to have a full solution, and this solution
reveals insights on Hamiltonian learning.



Lecture 11: October 10, 2024 11-3

11.3 Parameter Estimation from States

In this problem, there is an unknown parameter θ that determines the distribution pθ(x) of obser-
vation x. The goal is to output an optimal estimate θ̂ after observing x. It is assumed that pθ(x)
is continuous and differentiable over θ.
A simpler version of the problem involves distinguishing pθ(x) from p0(x) for θ close to 0. In this
case, we can simply use a likelihood ratio test for hypothesis testing. Define Wn as the logarithm
of such a ratio.

Wn(x
n) = log

∏n
i=1 pθ(xi)∏n
i=1 p0(xi)

(11.230)

We have seen before a bound on the expectation of Wn for the xn ← pn0 case.

Exn←pn0 (Wn) ≤ 0 (11.231)

We can also calculate the xn ← pnθ case.

Exn←pnθ (Wn) =
∑
xn

pnθ (x
n) log

∏n
i=1 pθ(xi)∏n
i=1 p0(xi)

(11.232)

=

n∑
i=1

∑
xn

pnθ (x
n) log

pθ(xi)

p0(xi)
(11.233)

=

n∑
i=1

∑
xi

pθ(xi) log
pθ(xi)

p0(xi)
(11.234)

= nD(pθ||p0) (11.235)

We can estimate the relative entropy D(pθ||p0) for small θ by expanding it as a power series. At
θ = 0, we know that it is zero and symmetric, so the constant and linear terms must be zero.
Therefore, the first potentially nonzero term is the quadratic term, which we denote F .

E(Wn) = nD(pθ||p0) = n(0 ∗ 1 + 0 ∗ θ + F ∗ θ
2

2
+O(θ3)) =

nFθ2

2
+O(θ3) (11.236)

We can restate this a direct formula for F , which we call the Fisher information.

F = ∂2θD(pθ||p0)|θ=0 (11.237)

The Fisher information has several equivalent forms, which are useful but will not be derived in
this lecture.

F =
∑
x

pθ(x)(∂θ log pθ(x))
2|θ=0 (11.238)

=
∑
x

(∂θpθ(x))
2

pθ
|θ=0 (11.239)

We now show that the Fisher information indicates whether pn0 and pnθ can be reliably distinguished.
We define this condition as the expectation ofWn under pnθ being greater than its standard deviation
under either pnθ or pn0 . Such a condition can be found by calculating the variance with a factor of
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1
n for convenience.

1

n
σ2xn←pnθ

(Wn) =
∑
x

pθ(x)(log
pθ(x)

p0(x)
)2 −D(pθ, p0)

2 (11.240)

=
∑
x

pθ(x)(θ∂θ log pθ +O(θ2))2 −O(θ4) (11.241)

= θ2
∑
x

pθ(x)(∂θ log pθ)
2 +O(θ3) (11.242)

= Fθ2 +O(θ3) (11.243)

To reliably distinguish the two distributions, the expectation must greater than the standard devi-
ation. We ignore O(θ3) elements.

nFθ2

2
= E(Wn) ≥

√
σ2(Wn) =

√
nFθ2 =⇒ θ ≥ 1√

nF
(11.244)

This is the minimum θ at which one can reliably distinguish pθ, p0.

11.4 Cramer-Rao Bound

We have found the minimum θ whose distribution can be reliably distinguished from that of 0.
This quantity also happends to also be the Cramer-Rao Bound.

Theorem 11.4.1. Define an estimator θ̂(xn) as locally unbiased if the expectation of the estimate
θ̂ is approximately θ when θ is close to θ0. θ0 will almost always be set to 0 in practice.

Exn←pnθ (θ̂) = θ +O((θ − θ0)2) (11.245)

If θ̂(xn) is locally unbiased, then σ(θ̂) ≥ 1√
nF

.

Proof. We wish to find a lower bound for the variance of θ̂. We can begin by noticing that
E(θ̂) = θ +O(θ2) and since θ is small, this term can be ignored in the variance of θ̂.

σ2(θ̂) = E(θ̂2)− E(θ̂)2 ≈ E(θ̂2) =
∑
xn

pnθ (x
n)θ̂(xn)2 (11.246)

We can then take a derivative of the locally unbiased condition.

1 = ∂θE(θ̂)|θ=0 (11.247)

= ∂θ
∑
xn

pnθ (x
n)θ̂(xn)|θ=0 (11.248)

=
∑
xn

∂θp
n
θ (x

n)|θ=0θ̂(x
n) (11.249)

= Exn←pnθ (xn)(
∂θp

n
θ (x

n)|θ=0

pnθ (x
n)

θ̂(xn)) (11.250)

= Exn←pnθ (xn)(∂θ log p
n
θ (x

n)|θ=0θ̂(x
n)) (11.251)

One can define an inner product a · b over functions a, b of xn and apply the Cauchy-Schwarz
Inequality over these functions.

a · b := Exn←pθ(xn)a(x
n)b(xn) (11.252)
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(a · b)2 ≤ (a · a)(b · b) (11.253)

In our current case, a(xn) = ∂θ log p
n
θ (x

n)|θ=0 and b(xn) = θ̂(xn).

12 = Exn←pnθ (xn)(∂θ log p
n
θ (x

n)|θ=0θ̂(x
n))2 (11.254)

= Exn←pnθ (xn)(a(x
n)b(xn))2 (11.255)

= (a · b)2 (11.256)

≤ (a · a)(b · b) (11.257)

= Exn←pnθ (xn)a(x
n)Exn←pnθ (xn)b(x

n) (11.258)

= Exn←pnθ (xn)(∂θ log p
n
θ (x

n)|θ=0)
2Exn←pnθ (xn)(θ̂(x

n))2 (11.259)

= nFσ2(θ̂) =⇒ (11.260)

σ2(θ̂) ≥ 1

nF
(11.261)

11.5 Quantum Fisher Information

We will now define the quantum version of Fisher information. In the quantum version of the
parameter estimation problem, the parameter θ determines a density matrix ρθ from which to
sample x, instead of a probability distribution. It is given that ρθ > 0 when θ is near θ0 ≈ 0.
We will also now define some new super-operators on matrices.

Multρ(X) =
1

2
(ρX +Xρ) (11.262)

Divρ = Mult−1ρ (11.263)

Lρ,θ = Divρθ(∂θρθ) (11.264)

∂θρθ = Multρθ(Lρ,θ) (11.265)

With these super-operators, we can define the quantum Fisher information.

FQ = tr
(
ρL2

)
(11.266)

Analogously to the classical Fisher information, the quantum Fisher information relates to the
second derivative of the quantum relative entropy.

FQ = ∂2θD(ρθ||ρ0)|θ=0 (11.267)

We can also relate the quantum Fisher information to the classical Fisher information. To do this,
define a set of measurement operators {Mx}x∈X with

∑
x∈XMx = I. We can calculate the Fisher

information of the distribution of the measurement, which is ρθ(x) = tr(ρθMx).

FM = F (ρθ(x)) (11.268)

=
∑
x∈X

tr(ρθMx)(
∂θ tr(ρθMx)

tr(ρθMx)
)2 (11.269)

=
∑
x∈X

tr(ρθMx)(
Re{tr(ρθLMx)}

tr(ρθMx)
)2 (11.270)

≤
∑
x∈X

tr(ρθMx)(
| tr(ρθLMx)|
tr(ρθMx)

)2 (11.271)



We used the fact that ∂θρθ is essentially the Hermitian part of ρθLρ,θ, so ∂θ tr(ρθMx) = Re{tr(ρθLMx)}.
We can now use the quantum Cauchy-Schwarz Inequality on | tr(ρθLMx)|. Specifically, the inequal-
ity states that | tr(AB)| ≤

√
tr(A†A) tr(B†B).

| tr(ρθLMx)| = | tr
(√

ρθL
√
Mx

√
Mx
√
ρθ

)
| (11.272)

≤
√
tr(ρθLMxL) tr(ρθMx) (11.273)

We can finally substitute this inequality back into FM .

FM ≤
∑
x∈X

tr(ρθMx)(
| tr(ρθLMx)|
tr(ρθMx)

)2 (11.274)

≤
∑
x∈X

tr(ρθLMxL) (11.275)

= tr
(
ρθL

2
)

(11.276)

= FQ (11.277)

In summary, the quantum Fisher information of a density matrix is at least the classical Fisher
information of distribution of measurement outcomes on that density matrix. The inequality is
tight if the measurement is done in the eigenbasis of L.

11-6
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Lecture 12: October 17, 2024

Scribe: Yeongwoo Hwang Random states and entanglement

12.1 Introduction

In this lecture, we will discuss random variables, states and unitaries. First, why do we care about
this topic? Well, they are critical for many applications, such as benchmarking of quantum devices
and quantum state learning (e.g. state tomography). We’ll see two themes in this lecture,

• Concentration of measure

• Probability distributions on larger spaces, such as the complex unit sphere.

12.2 Scalar random variables

A central tool is Markov’s Inequality, which states that for a random variable X, with X ≥ 0
always, then

Pr
X
[X ≥ c · E[X]] ≤ 1

c
(12.278)

where we use bold face to indicate random variables. By simple transformations on the random
variable on which we apply Markov’s inequality, we can achieve tighter bounds than the above.

Chebyshev’s Inequality For X as above, we have

Pr
[
|X − E[X]| ≥ c

√
Var[X]

]
≤ 1

c2

Proof. Let Y := (X−E[X])2. Then, we see that E[Y ] = Var[X] = E[X2]−E[X]2. By substituting
in Y for X into (12.278), we obtain the desired conclusion.

Chernoff To get the equivalent of a Chernoff inequality, we apply (12.278) to the moment gen-
erating functions for X, which is E[eλX ]. Applying Markov’s inequality to eλX then yields

Pr
[
eλX ≥ cE[eλX ]

]
≤ 1

c
(12.279)

A common case is when X ∼ Uniform[{+1,−1}]. In this case, the RHS of (12.279) becomes

E[eλX ] =
1

2
(eλ + e−λ) = cosh(λ)

This becomes particularly useful when X is itself the sum of multiple random variables. Let’s
define Y =

∑n
i=1Xi, where eahc Xi is again uniform over {+1,−1}. Then,

E[eλY ] =
m∏
i=1

E[eλXi ] =

m∏
i=1

cosh(λ) = cosh(λ)m ≤ eλ
2m
2 (12.280)
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Where the final inequality uses that cosh(λ) ≤ e
λ2

2 . We can use this to get concentration scaling
exponentially in n. In particular, setting X to be Y and

c =
eδ

2m

E[eλY ]
=

eδ
2m

eλ
2m
2

in (12.279), we obtain that

Pr[Y ≥ δm] ≤ emλ2/2−mδ2 ≤ e−mδ2/2

for λ := δ.

12.3 Random vectors

We now move on distributions over vectors. Our goal throughout this section will be to compute
quantities like Eψ∼unif(Sd−1)[|ψ⟩⟨ψ|

⊗m], where Sd−1 is d-dimensional unit sphere. First, let’s con-

sider when |g⟩ is drawn with each coordinate IID from the complex normal distribution NC(0,
1
d),

i.e.

|g⟩ =

g1...
gd

 with gi ∼ NC(0,
1
d)

As a remark, sampling gi ∼ NC(0,
1
d) is equivalent to sampling xi,yi ∼ N (0, 1

2d) and setting
gi = xi + iyi. This distribution has several nice properties.

• E|g⟩ ⟨g|g⟩ = 1

• |g⟩ has density µ(|g⟩) =
(
d
π

)d
e−d⟨g|g⟩

• From the above property, we see that the PDF does not depend on the direction of |g⟩, only
its magnitude. This implies that the distribution is rotationally invariant, and in particular,
it is unitarily invariant.

Of course, this distribution has the downside that the vectors are normalized only in expectation.
Thus, we define a related distribution where we generate |u⟩ as,

|u⟩ = |g⟩√
⟨g|g⟩

with |g⟩ drawn as before. This distribution is denoted as Haar(Sd−1). We claim that this distribu-
tion is uniform over the surface of the complex sphere, i.e. unitarily invariant.

Proof. Let U be any unitary. Then by the third property above, we see that U |g⟩ is distributed
the same as |g⟩. Thus,

U |u⟩ = U |g⟩
∥U |g⟩ ∥2

=
|g⟩

∥U |g⟩ ∥2
=

|g⟩
∥ |g⟩ ∥2

where the equalities are equalities as distributions. Since the quantity on the RHS is the definition
of |u⟩, this shows that |u⟩ is rotationally invariant.



12.3.1 Computation of moments

Given this, how do we compute E[|ψ⟩⟨ψ|⊗m]? We will,

1. Compute E[|g⟩⟨g|⊗m]

2. Relate to E[|ψ⟩⟨ψ|⊗m]

Step 1 Let’s start with E[|g⟩⟨g|]. It suffices to compute the expectations of each entry, e.g.

E[gig∗j |i⟩⟨j|]. Since each index of |g⟩ is sampled IID, this is equal to E[gig∗j ] |i⟩⟨j| =
δi,j
d |i⟩⟨j|. This

implies that,

E|g⟩[|g⟩⟨g|] =
1

d
I

For E[|g⟩⟨g|⊗2], we encounter slightly more complicated expressions. In particular,

E[|g⟩⟨g|⊗2] =
∑
i1,i2,
j1,j2

E[gi1gi2g∗j1g
∗
j2 ] |i1i2⟩⟨j1j2|

To evaluate each of these expectations, we use Wick’s Theorem. In the m = 2 case, this theorem
tells us that

E[gi1gi2g∗j1g
∗
j2 ] = E[gi1gj1∗]E[gi2g∗j2 ] + E[gi1g∗j2 ]E[gi2g

∗
j1 ] =

δi1,j1δi2,j2 + δi1,j2δi2,j1
d2

where the middle sum is over all possible pairs of (i1, i2) with (j1, j2). For general m, we obtain
expectations like

E[gi1 , . . . gimg∗j1 . . . g
∗
jm ] =

1

dn

∏
π∈Sn

m∏
ℓ=1

δiℓ,jπ(ℓ)

After some simplification, which was omitted in the lecture, we find that,

E[|g⟩⟨g|⊗m] = 1

dn

∑
π∈Sn

Pπ with Pπ =
∑

i1,...,im

|i1, . . . , im⟩⟨iπ(1), . . . , iπ(m)| (12.281)

Step 2 Finally, we want to relate (12.281) to E[|ψ⟩⟨ψ|⊗m]. Recall that |g⟩ = r |u⟩ and, moreover,
r and |u⟩ are uncorrelated due to the rotational invariance of |g⟩. This means that,

E[|g⟩⟨g|⊗m] = E[r2n]E[|ψ⟩⟨ψ|⊗m]

We saw that the LHS is Πsym = 1
dn
∑

π∈Sn
Pπ. Since we know E[|ψ⟩⟨ψ|⊗m] is a normalized quantum

state, this implies that the scaling factor is just tr[Πsym]. Thus, we conclude that,

E[|ψ⟩⟨ψ|⊗m] = Πsym

tr[Πsym]

To make this more concrete, when m = 2, it turns out that Πsym (which is the projector onto the
symmetric subspace) is spanned by |00⟩ , |11⟩ , and 1√

2
(|01⟩ + |10⟩). These are all states invariant

under the SWAP operation. What is tr[Πsym], i.e. the dimension of the symmetric subspace? We’ll

see in the next lecture this is
(
d+m−1
m

)
.

12-3
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Lecture 13: October 22, 2024

Scribe: Louis Marquis and Ruohan Shen More on Random States

Unfortunately, there was no the audio in the recording of the lecture, so some details explained
verbally might be missed in these notes. This lecture will continue on random states where the
previous lecture began. Random states are useful to generate states with desireable properties
when the probability of not having that property is low-dimensional. Low-dimensional, in this
case, means that the probability is essentially zero. For example, non-invertibility of a matrix
is low-dimensional, as it requires the determinant to be exactly zero, while there are essentially
infinite real values it could take. This lecture covers various properties of random states, including
moments, anticoncentration, Renyi entropy, and entanglement.

13.1 Moments of Random States

As previously introduced, the the nth moment of a distribution over states is the expected value
of the density matrix of n copies of the state. A very important such distribution is the uniform
distribution over all unit-1 complex vectors (we will write this condition as |u⟩ ∈ Cd, with the
unit-1 implicit). We can calculate the nth moment of this random state.

E|u⟩∈Cd |u⟩ ⟨u|⊗n =
Π

(n,d)
sym

tr(Πsym)
(13.282)

=
1
n!

∑
Π∈Sn

PΠ(
d+n−1
n

) (13.283)

=

∑
Π∈Sn

PΠ∏n−1
i=0 d+ i

(13.284)

We used the definition of Πsym from last lecture, whose trace can be calculated via combinatorics
(the stars and bars method).

Πsym =
∑

t∈types
|Tt⟩ ⟨Tt| (13.285)

|Tt⟩ =
1√(
n
t

) ∑
xn∈Tt

|xn⟩ (13.286)

Tt = {xn : type(xn) = t} (13.287)

We can estimate E(|u⟩ ⟨u|⊗n) by sampling over the Gaussian state |g⟩ ∈ NC(0, 1
d
)d instead.

E|g⟩∈NC(0, 1
d
)d
|g⟩ ⟨g|⊗n =

Π
(n,d)
sym

dn
(13.288)

Notice that this value differs from the other moment by a normalization. Also notice that higher
n are more sensitive to fluctuations. Also, it’s useful to know that the Gaussian is the only moment
that is rotationally (unitarily) invariant.
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Remark 13.1.1. We can conclude that

i.i.d. + rotational invariance ⇔ Gaussian

We now provide a concrete proof for this statement. It is straightforward to verify that an i.i.d.
Gaussian distribution is rotationally invariant, so we will focus on proving the converse. Given an
i.i.d. distribution, it can be written as:

p(x1, . . . , xn) = f(x1) . . . f(xn) (13.289)

Rotational invariance imposes the condition that the joint probability only depends on the radial
distance, meaning:

p(x1, . . . , xn) = g

(√
x21 + · · ·+ x2n

)
(13.290)

To connect g with f , we choose x2 = · · · = xn = 0, which allow us to express g in terms of f :

g(x) = f(x)fn−1(0) (13.291)

Furthermore, we can get the functional equation for f :∑
i

ln
f(xi)

f(0)
= ln

f(
√
x21 + · · ·+ x2n)

f(0)
(13.292)

The only solution to this functional equation is the Gaussian distribution, which concludes the proof.

We can use the moment to calculate the expected value of an exponent of the overlap of a
random state with an arbitrary given vector.

E|u⟩| ⟨u|0⟩ |2k = E|u⟩| ⟨0|u⟩ ⟨u|0⟩ |k (13.293)

= tr
(
|0⟩ ⟨0|⊗k ⊗ E|u⟩(|u⟩ ⟨u|⊗k)

)
(13.294)

= E|u⟩ tr
(
|u⟩ ⟨u|⊗k

)
(13.295)

=
1(

d+k−1
k

) (13.296)

This value approximates to k!
dk

if d >> k. We can then calculate the mean and standard
deviation of | ⟨u|0⟩ |2.

E|u⟩| ⟨u|0⟩ |2 =
1

d
(13.297)

E|u⟩| ⟨u|0⟩ |4 =
2

d(d+ 1)
(13.298)

≈ 2

d2
(13.299)

σ(| ⟨u|0⟩ |2) =
√
E|u⟩| ⟨u|0⟩ |4 − (E|u⟩| ⟨u|0⟩ |2)2 (13.300)

≈ 1

d
(13.301)

Notice that the mean and standard deviation are comparable. There’s also a tail bound
Pr
(
| ⟨u|0⟩ |2 ≥ r

d

)
≈ e−r but we aren’t proving this this lecture.
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13.2 Representation

Denote R as a representation that maps elements in group G to unitaries that operate on the vector
space V . V G as the set of all states that are invariant under all R(g).

R : G→ U(V ) (13.302)

V G = {ψ ∈ V : R(g) |ψ⟩ = |ψ⟩ , ∀g ∈ G} (13.303)

For example, suppose G = U(d) and R(g) = g. Then V G = {0}. If instead R(g) = g⊗ g∗, then
V G = C |ϕ⟩ = Cvec(I).

Theorem 13.2.1. Define Π as the average of all R(g). We claim that this is the projector onto
V G.

Π =
1

|G|
∑
g∈G

R(g) = proj V G

Proof. We first prove that Π is a projector. Let h be an arbitrary element of G.

R(h)Π =
1

|G|
∑
g∈G

R(h)R(g) (13.304)

=
1

|G|
∑
g∈G

R(hg) (13.305)

=
1

|G|
∑
g′∈G

R(g′) (13.306)

= Π (13.307)

Π†Π =
1

|G|
∑
h∈G

R(h)†Π (13.308)

Π†Π =
1

|G|
∑
h∈G

R(h−1)Π (13.309)

Π†Π =
1

|G|
|G|Π (13.310)

Π†Π = Π (13.311)

(13.312)

Therefore, Π is a projector. We also show that it projects onto V G.
By definition, each |ψ⟩ ∈ V G is invariant under Π, since Π is a linear combination of R(g). We

also see that R(g)Π |ψ⟩ = Π |ψ⟩, so Π |ψ⟩ ∈ V G. This proves that Π projects onto V G.

13.3 Anticoncentration

Ideally, we would like to sample random norm-1 states. A first strategy that might come to mind is
simply to apply random gates to a initial state |0⟩. WLOG assume that these are two-qubit gates,
since any multi-qubit gate can be made from two-qubit gates.

|ψ⟩ = UT ...U1 |0⟩ (13.313)
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It’s clear that this fails to achieve uniform randomness with a polynomial number of gates,
as |ψ⟩ has an exponential number of degrees of freedom. However, it is possible to sample from
distributions that aren’t exactly the uniform distribution but whose moments are close to that
of the uniform. We’d like a metric of the anticoncentration (or how un-uniform it is) of such an
approximate distribution, so that we can minimize it. Entropy H(p) would work but it’s harder
to calculate with log. Instead, we define a new one. Let p(z) = | ⟨z|ψ⟩ |2 be the probability of
sampling the value z from the a state |ψ⟩.

E|ψ⟩
∑
z

p(x)2 = E|ψ⟩
∑
z

| ⟨z|ψ⟩ |4 = 2

2n + 1
(13.314)

We see that this metric is 1 if the distribution is deterministic. Otherwise, it is
∑

z
2

2n(2n+1) =
2

2n+1 , which is exponentially decreasing. We can then define a different metric that directly calcu-
lates the sum-of-squared differences of a distribution’s probabilities from the uniform.∑

z

(p(z)− 1

2n
)2 =

∑
z

p(z)2 − 1

2n
(13.315)

We can also use (13.314) to bound the average Shannon entropy of the measurement outcomes.

E|ψ⟩H(p) ≥ E|ψ⟩H2(p) (13.316)

= E|ψ⟩

[
− ln

∑
z

p(z)2

]
(13.317)

≥ − lnE|ψ⟩

[∑
z

p(z)2

]
(13.318)

≈ n− 1 (13.319)

13.4 Renyi Entropy

Besides Shannon entropy, we can define Renyi entropy to quantify our ignorance about a classical
distribution. The classical Renyi entropy is defined as:

Hα(X) =
1

1− α
log

(∑
x

p(x)α

)
(13.320)

where α ≥ 0. The classical Rényi entropy possesses several properties that are straightforward to
verify:

1. Hα(uniform distribution) = log d

2. 0 ≤ Hα ≤ log d

3. d
dαHα ≤ 0

Similarly, the quantum Renyi entropy can be defined as:

Sα(ρ) =
1

1− α
log (tr ρα) (13.321)

We are particularly interested in specific values of α:
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1. S∞(ρ) = − log λmax = − log ||ρ||∞

2. S2(ρ) = − log
(
tr ρ2

)
3. S0(ρ) = log(rank ρ)

We can see that for α < 1, the Renyi entropy is more sensitive to small eigenvalues of ρ; whereas
for α > 1, it becomes more sensitive to large eigenvalues. Here’s a concrete example to illustrate
this sensitivity. Consider the following density matrix on 106 qubits:

ρ =
1

2

(
I

2

)⊗102
⊗ (|0⟩ ⟨0|)⊗10

6−102 +
1

2

(
I

2

)⊗106
(13.322)

This density matrix describes a system that, with probability 1/2 , is maximally mixed over all
106 qubits, and with probability 1/2 , is only maximally mixed on the first 102 qubits while the
remaining 106− 102 qubits are in the pure state |0⟩. Approximately, this state has 210

6
eigenvalues

equal to 2−10
6
and 210

2
eigenvalues equal to 2−10

2
. Using this information, we can calculate the

Rényi entropy for different values of α :α:

Sα(ρ) ≈


106 α < 1

1 + 106+102

2 α→ 1

102 α > 1

(13.323)

The quantum Renyi entropy can be related to the von Neumann entropy by taking the limit of
α:

lim
α→1

Sα(ρ) = S(ρ) (13.324)

Unlike the von Neumann entropy, which requires computing the logarithm of the density matrix,
the Renyi entropy instead only involves calculating the moments. This makes the Renyi entropy
more tractable when dealing with random ensembles.

With these tools in hand, we are now ready to prove the statement that most pure states are
highly entangled. Consider a quantum state |ψ⟩ ∈ CdA⊗CdB . Without loss of generality, we assume
that dA ≤ dB. Our goal is to establish a lower bound on the expected von Neumann entropy of the
reduced state by relating it to the second Renyi entropy, and then to directly calculate the Renyi
entropy.

ES(A) ≥ ES2(A) = E tr
(
− logψ2

A

)
(13.325)

≥ − logE trψ2
A (13.326)

the second line comes from the convexity of the function − log.
To further calculate E trψ2

A, we need the following Lemma:

Lemma 13.4.1 (SWAP trick). Let FAB be the swap operator on system A and B, then

trFAB(XA ⊗ YB) = trXAYB (13.327)

Proof. The two operators XA and YB can be written as:

XA =
∑
ij

Xij |i⟩ ⟨j| (13.328)

YB =
∑
kl

Ykl |k⟩ ⟨l| (13.329)



Then we have

trFAB(XA ⊗ YB) =
∑
ijkl

trFABXijYkl |ik⟩ ⟨jl| (13.330)

=
∑
ijkl

trXijYkl |ki⟩ ⟨jl| (13.331)

=
∑
ik

⟨ki|XikYki |ki⟩ (13.332)

= trXAYB (13.333)

Then we can directly calculate that

E trA ψ
2
A = E trA1A2 [FA1A2 (ψA1 ⊗ ψA2)] (13.334)

= trA1A2B1B2 FA1A2E (ψA1B1 ⊗ ψA2B2) (13.335)

= trA1A2B1B2 FA1A2

I + FA1A2FB1B2

dAdB(dAdB + 1)
(13.336)

= trA1A2

FA1A2d
2
B

dAdB(dAdB + 1)
+ trB1B2

FB1B2d
2
A

dAdB(dAdB + 1)
(13.337)

=
dA + dB
dAdB + 1

=
1

dA
+

1

dB
(13.338)

The first line applies the SWAP trick. The second line extends the reduced density matrix ψA
to trB ψAB. The third line computes the second moment of the random state. The fourth line
comes from the fact that FABFAB = I and trB1B2 IB1B2 = d2B. The last line comes from that
trA1A2 FA1A2 = dA. Now we can conclude that:

ES(A) ≥ − log

(
1

dA
+

1

dB

)
(13.339)

In the limit dB → ∞, system B behaves like a huge heat bath, and ES(A) ∼ log dA = tr IA/dA.
This shows that, in the typical case, region A is maximally entangled with system B.

13-6
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14.1 Entanglement of Random States

14.1.1 Continuation from Last Lecture

A main theme of this section is to continue illustrating that random states are likely to be highly
entangled. Recall from last lecture, if have a random state

|ψ⟩ ∈ CdA ⊗ CdB (14.340)

then to quantify is entanglement, we have the expectation value of

E trA ψ
2
A =

dA + dB
dAdB + 1

≈ 1

dA
+

1

dB
(14.341)

To illustrate a consequence of this, let us imagine we have a random state on system A and B,
with total of n qubits, where we allocate nA qubits to the first and nB qubits to the second. This
means dA = 2nA , dB = 2nB , with nA+nB = n. If we plot the entropy of subsystem A as a function
of qubits in that system nA between 0 and n, we will find what is called the “Page Curve”.

We can write down a straightforward upper bound, which is

S(A) ≤ min(nA, nB), (14.342)

because the entropy cannot exceed log2(dA) = nA. Also we stipulate that the entropy of the two
system to be the same, entropy also cannot exceed the entropy of system B. The actual plot is
shown below, where the upperbound is mostly saturated except by a small amount in the middle,
which is off by a constant amount.

Figure 14.7: Page Curve (black), taken from Markus P. Müller’s website

If we used

E trA ψ
2
A ≈

1

dA
+

1

dB
(14.343)

to calculate the entropy, we would have gotten S(A) = nA − 1.
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14.1.2 Another Way to Gauge Entanglement

After studying entanglement using entropic measurements, let us explore how to use our old friend
distance measure to measure entanglement. Say,

∥ψA −
I

d
∥1 (14.344)

We found that it will be easier to convert the 1−norm in Trace Distance to a 2−norm squared,
because we want our tools of moments to show up cleanly in this expression. In problem set, we
have shown that, using Cauchy-Schwartz,

∥ψA −
I

dA
∥1 ≤

√
dA∥ψA −

I

d
∥2 (14.345)

We then calculate

∥ψA −
I

d
∥22 = trψ2

A + tr

(
ψA

I

dA

)
− tr

(
ψA

I

dA

)
− tr

(
I

dA

)2

(14.346)

= trψ2
A −

1

dA
(14.347)

=⇒ E∥ψA −
I

d
∥22 ≈

1

dB
(14.348)

Using this, we get

E∥ψA −
I

d
∥21 ≤ dAE∥ψA −

I

d
∥22 ≈

dA
dB

= 2nA−nB (14.349)

(14.350)

which is more useful if nA and nB are different.

E∥ψA −
I

d
∥1 ≤

√
E∥ψA −

I

d
∥21 ≤

√
dA
dB

(14.351)

14.2 Pseudo-Random States and k-design

Now that we have seen random states are highly entangled, how would we as mortal human get
close its power? We will use Pseudo-Random States, which hopefully are informationally indis-
tinguishable from true random states, at least up to a certain moments. Note that there are
computationally pseudo-random states, which we won’t get into.

To define this better, we say

Definition 14.2.1. If µ is a measure on Cd, we say µ is a state k−design if

E|ψ⟩∈µ|ψ⟩⟨ψ|⊗k = E|ψ⟩∈Cd |ψ⟩⟨ψ|⊗k

This ensures that the first k−moments match the true random states. Later we will talk k−
design for random circuits and random unitaries.
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14.2.1 k = 1

In this case, 1− design needs

E|ψ⟩∈µ|ψ⟩⟨ψ|⊗k =
I

d

We can just draw states from any orthonormal basis, to achieve 1−desgin. Note we only need
a discrete set of things to achieve this. Note this means that, if we have an observable M ,

E ⟨|ψ|M |ψ⟩ (14.352)

will be the same as if we drawn ψ from true random states, but the variance might be different.
However, if we know measure in the orthonormal basis we draw states from, with many samples

we may be able to distinguish 1−designs we ture random states.
What is worse, these basis does not reproduce the entanglement properties of random states,

which we derived from second-moment calculations.

14.2.2 k = 2

The condition now is

E|ψ⟩∈µ|ψ⟩⟨ψ|⊗2 =
I + F

d(d+ 1)
(14.353)

An example of this 2−design is Random Stabilizer States:

ψS = |ψS⟩⟨ψS | = 2−n
∑
σp∈S

σp (14.354)

Some bookkepping is in place:

1. S is an abelian subgroup of Pauli’s on n−qubits with |S| = 2n. S does not include −I.

2. Using these states, can specify a state with n2 bits (instead of 2n for uniformly random states).

3. These states are also highly entangled, which is what we want.

4. They can be efficiently simulated classically using the Gottesman-Knill theorem.

5. I also found a GitHub Repo that claim it does sampling of random stabilizer states efficiently
(https://github.com/qotlabs/randstab).

In this case, µ is a probability distribution on |ψS⟩, where we choose S uniformly to specify a state
from all the random stabilizer states, liek this:

ESψS ⊗ ψS =
I + F

2n(2n + 1)
(14.355)

To prove this statement, let us recall that

trF (X ⊗ Y ) = trXY (14.356)

(14.357)
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and we can plug in pauli’s into the above expression as X,Y , and we can learn the Pauli’s expansion
of the swap operator F :

trF (σp ⊗ σq) = trσpσq = 2nδpq (14.358)

(14.359)

This way, we get:

F = 2−n
∑

p∈{0,1,2,3}n
σp ⊗ σp (14.360)

Now let us calculate,

ES4−n
∑
σp∈S

σp ⊗
∑
σq∈S

σp = 4−n
∑
p

Pr(σp ∈ S)σp ⊗ σp (14.361)

Because S is uniformly distributed, we can say that if p = 0n, Pr(σp ∈ S) = 1 but if p ̸= 0n,
Pr(σp ∈ S) = 1

2n+1 , which is the same for any other Pauli, after counting how many non-identity
Pauli’s. We draw 2n − 1 non identity Paulis. The p = 0n part shall give us the identity part, and
the rest shall give us the swap operator part of the expression.

14.2.3 Other 2-designs

Fermionic Gaussian States (free fermion states) are also 2-designs. It is a continuous distribution
that have symmetry of orthogonal group. We will discuss them later.

14.3 More calculation on Entropy

Next, let us what other ways of characterizing entanglement in random states. For example, let
consider what is the probability that a random state is low in entanglement. This is

Pr
[
trψ2

A ≥ 2l−nA

]
∼= nA − l (14.362)

We can use the Markov’s inequality to do this,

Pr
[
trψ2

A ≥ 2l−nA

]
≤

E trψ2
A

2l−nA
≈ 2−l (14.363)

Assuming ψA is pretty random. We can see the larger the deficit of entanglement (l) the smaller
the probability. If we want to calculate the variance, which appear in Chebyshev’s inequality, we
would have need E(trψ2

A)
2 = E(trψ⊗4A (F12 ⊗ F34), which requires 4-th moment, so a 2-design

wouldn’t have gave us the accurate information.

14.4 Characterizing Random States without Moments

Moving on to do some calculation on uniform state. The largest eigenvalue of ψA is

∥ψA∥∞ = max|α⟩∈Cd,|β⟩∈Cd [⟨ψ|(|α⟩A ⊗ |β⟩B)] (14.364)
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Note if ψA is uniform this expression will be 1
d . Let us see how close a random states can get to

this value.
If we fix |α⟩, |β⟩ and calculate ⟨ψ|α, β⟩, we argue that there is a small probability that ∥ψA∥∞

will be large. We can use result from last lecture with the replica trick that

E|⟨ψ|α, β⟩|2k = k!

d · · · (d+ k − 1)
≤ k!

dk
, (14.365)

where |ψA⟩ is random.
A trick to bound this is relate |ψ⟩ to random Gaussian states |g⟩

Eg
[
|⟨g | α, β⟩|2k

]
= Err2k · Eψ|⟨ψ | α, β⟩|2k ≤ E|⟨ψ|α, β⟩|2k

where |g⟩ = r|ψ⟩ and we normalize Er2 = 1. This means:

Pr
[
|⟨ψ | α, β⟩|2 ≥ γ

]
≤ Pr

[
|⟨g | α, β⟩|2 ≥ γ

]
= e
− d2

γ , (14.366)

because every moment on the LHS is smaller than that of Gaussian. To illustrate the equality to
be exponential, we write explicitly

|g⟩ =


x1 + iy1
x2 + iy2

...
xd + iyd

 (14.367)

and do a Gaussian integral

Pr
[
x2i + y2i ≥ γ2

]
=

∫
r≥γ

∫
dθe−

r2

2σ2 (14.368)

Applying this, we see

Pr
[
|⟨ψ|α, β⟩|2 ≥ a

d

]
≤ e−da (14.369)

which says the fluctuation of the inner product is very small. Next, let us consider the worst case
scenario using the Union Bound.

Pr

[
max
α,β
|⟨ψ|α, β⟩|2 ≥ a

d

]
≤
∑
α,β

Pr
[
|⟨ψ|α, β⟩|2 ≥ a

d

]
= (number of {α, β}) e−da

But exactly how many α, β are out there? To pinpoint them exactly, we need infinite precision.
However, we can use the concept of δ-net to specify them to good precision (not exactly). We
define

N = δ-net ⊂ Cd

Now we just maximize all α, β that lives in the δ−net, with size |N |.



Pr

[
max
α,β∈N

|⟨ψ|α, β⟩|2 ≥ a

d

]
≤
∑
α,β∈N

Pr
[
|⟨ψ|α, β⟩|2 ≥ a

d

]
= |N |2e−da

Let us see how big N is then. Ideally we don’t want them to be too big. We claim that

∃N such that |N | ≤
(
1 +

2

δ

)2d

, and N is a δ-covering of unit sphere in Cd.

To prove this, we can construct the net this way. If N is not a δ−net, at step i, you can add
|βi⟩, who are at least δ far away from the set, to the net. Suppose we have a measure where volume
of a ball of radius 1 is 1, so a ball of radius δ/2 would have a volume of (δ/2)2d. As long as the
following is true, we cannot add more points to the net. So we can consider an |N | that barely
passes this inequality, which proves the statement on the size of N

|N | ·
(
δ

2

)2d

<

(
1 +

δ

2

)2d

(14.370)

Final Stretch now! Let us define

max
α,β∈Cd

|⟨ψ | α, β⟩|2 = A

max
α,β∈N

|⟨ψ | α, β⟩|2 = B

We have proven that B is not that big from the δ−net argument, say

B ≤ 10

d

By triangle inequality, we have a straightforward bound:

A ≤ B + δ

However, a better bound is
A ≤ B + 2δA

which comes from analyzing the error by restricting to the δ−net more carefully. We have

error = (|x⟩ − |xN ⟩)⊗ |β⟩+ (|α⟩ ⊗ |β⟩ − |βN ⟩) = O(δ)

We then take the inner produc between this error term with Ψ, which from the definition of A is
at most to get δA.

So we have

A ≤ B

1− δ
As a result, the probability of not enough entanglement goes down exponentially in d, who is
exponential in the number of bits:

Pr[low entanglement] ≤ e−2n

This bound is stronger than that we calculated from second moments, which shows how strong the
entanglment of uniformly random states is.

14-6
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In this lecture, we’ll build the background for a more principled approach to these calculations.

15.0 Random Unitaries and Haar Measure

The uniform distribution over the unitary group U(d) is given by the Haar measure, denoted
µHaar. This measure is the analog of the uniform distribution for any compact group and is defined
by the following properties:

• Normalization: µHaar(U(d)) = 1.

• Invariance: For any subset S ⊆ U(d) and any U ∈ U(d), we have

µHaar(S) = µHaar(US) = µHaar(SU).

Physicist’s Perspective

This invariance implies that the measure is “uniform” in the sense that if we rotate any subset
of unitaries, its measure does not change. Thus, the Haar measure provides a probability
density that is independent of the choice of coordinates on U(d).

The Haar measure is unique: if any probability distribution on U(d) is left invariant, it must
be the Haar measure. This left and right invariance essentially characterizes it, making it a funda-
mental tool in defining randomness for unitary operations.

15.0.1 Random Unit Vectors and Gaussian Sampling

For generating random unit vectors computationally, a common approach is to sample each com-
ponent independently from a Gaussian distribution (which is rotationally invariant), and then
normalize the vector. This produces a uniformly random vector on the unit sphere.

For random unitaries, one approach involves using the Gaussian Unitary Ensemble (GUE), a
distribution over Hermitian matrices. To construct a GUE matrix:

• Diagonal entries are real, Gaussian-distributed.

• Off-diagonal entries are independent, with real and imaginary parts drawn from Gaussian
distributions.

Given a Hermitian matrix X sampled from GUE, the unitary eiX approximates a Haar-random
unitary. This method is computationally feasible though not perfect, as it involves approximately
O(d3) operations.

Practical Limitations

Sampling a truly Haar-random unitary is computationally challenging in high dimensions
due to the large number of degrees of freedom. Approximate methods such as GUE provide
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feasible alternatives for many practical applications.

15.0.2 Introduction to Unitary k-designs

A unitary k-design is a distribution over unitaries that mimics the Haar measure up to the k-th
moment. Formally, for any integer k, a distribution ν on U(d) is a k-design if the following holds:

EU∼ν
[
U⊗k,k

]
= EU∼Haar

[
U⊗k,k

]
.

This means that, up to the k-th moment, the behavior of unitaries sampled from ν is indistinguish-
able from unitaries sampled according to the Haar measure.

Definition: k-design via Tensor Powers

The notation U⊗k,k is shorthand for U⊗k ⊗ U∗⊗k, which represents k copies of U acting on
the system along with k copies of the complex conjugate of U . A distribution ν on U(d) is a
k-design if choosing U from ν gives the same distribution for U⊗k,k as choosing U from the
Haar measure.

15.0.3 Level Repulsion and Eigenvalue Distribution

One notable feature of random unitary matrices is level repulsion, where eigenvalues tend to
avoid being close to one another. The probability density of the eigenvalues {λi} includes a term
like ∏

i<j

|λi − λj |2,

which vanishes when two eigenvalues coincide. This “repulsion” is similar to the behavior of charges
repelling each other, leading to eigenvalues that spread out more evenly on the unit circle.

Visualization Exercise

Plotting the eigenvalues of a Haar-random unitary matrix on the complex unit circle reveals
this level repulsion. Comparing this distribution with randomly chosen phases eiθ illustrates
the difference: in the Haar case, the eigenvalues push each other apart, while in the random
phase case, they can cluster by chance.

This phenomenon is a well-known property in random matrix theory and also appears in GUE.
When eigenvalues are distinct, each eigenvector has more degrees of freedom. For degenerate
eigenvalues, the dimensionality of the associated subspace decreases.

15.0.4 Compactness and the Haar Measure

The Haar measure is defined for compact groups, such as U(d), where the group has a finite
total volume that can be normalized to 1. For non-compact groups, such as SL(2,R), there is no
normalized Haar measure due to infinite volume.
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Fact: Invariant Subspace Projection

For a compact group G, averaging a representation R over G with the Haar measure yields
a projection onto the invariant subspace V G:∫

G
R(g) dµHaar(g) = ProjV G .

This concept is crucial in representation theory and plays a foundational role in understanding
k-designs.

15.0.5 Classical Analogue: k-wise Independent Hash Functions

In classical computing, k-designs have an analogy in k-wise independent hash functions. A
hash function h : U → [m] is k-wise independent if, for any distinct inputs x1, . . . , xk and outputs
y1, . . . , yk ∈ [m], we have:

Pr
h∈H

(h(x1) = y1 ∧ · · · ∧ h(xk) = yk) =
1

mk
.

This implies that the hash function behaves like a truly random function when viewed through any
k inputs, although it is not completely random.

Construction

Degree-k polynomials are often used to construct k-wise independent hash functions. These
provide a computationally efficient balance between determinism and the randomness re-
quired for various applications.

15.0.6 Approximately Randomizing Maps

Instead of using d2 number of unitaries to satisfy a unitary-1 design, we can settle for Approximate
Randomizing Maps (AKA approximate 1-designs):

N (ρ) =
1

m

m∑
i=1

UiρU
†
i (15.371)

We know for a fact that they exist and satisfy∥∥∥∥N (ρ)− I

d

∥∥∥∥
∞
≤ ϵ

d
, ∀ρ (15.372)

where m ≲ d
ϵ2
. If ϵ is constant, then this is more economical than the exact randomizing maps.

One interesting consequence is data hiding, which we partially explore on our PSET. Examine
the following state:

(I ⊗N ) (Φd) . (15.373)

It has rank on the order d
ϵ2
. This means that it is far from the maximally mixed state. However,

(I ⊗N ) (Φd) and the maximally mixed state
Id2
d2

are almost indistinguishable using local operation
and classical communication (LOCC). To distinguish them you need a global measurement. Say
Bob measure on his basis (the second system), his measurement will got conjugated by a bunch of
random unitary, which averages his measurement close to identity.
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15.0.7 Summary of Designs

For 1−design, we need d2 unitaries. For Approximate 1−design, we need d
ϵ2

unitaries. If we
want discrete approximate for Haar randomness, we need exp

{
d2
}
matrices. So we can see that

(approximate) 1−designs provide significant savings compared to real Haar measures.

15.0.8 Approximate 1-Design on Teleportation

In regular teleportation, we use 2n cbits and n ebits to send n qubits. There is no asymptotic
savings. However, if we use Remote State Preparation and Approximate Randomizing Maps
(arXiv:quant-ph/0006044), where Alice knows classically what state is to be transmitted (Alice
does not physically have a physical copy of the state), we can only use 1 + δ cbits and n ebits to
prepare n qubits. The intuitive understanding of the saving is that Alice has some extra information
on the state that she is sending, which affects her action in the protocal.

15.1 2-Designs

The need for 2−Designs basically comes from where you which to apply U twice, or you wish to
understand high moments of random unitaries. Just like state 1− versus 2− designs, for unitary
2− designs, we need entangling operations, which will take a product state to a state 2−designs.

T (X) ≡ EHaar (U ⊗ U)X(U ⊗ U)† (15.374)

If we just take U to be the Paulis, and X = |00⟩⟨00|, we would get

T (X) =
|00⟩⟨00|+ |11⟩⟨11|

2

where true random unitary will give you a combination of all the triplet states.
Let us examine what kind of X will be invariant under the map T (X) to see what T (X) does.

One obvious answer is

X = Id2 , T (Id2) = Id2 (15.375)

because the unitaries would have canceled each other, and one less obvious answer is

X = F, T (F ) = F (15.376)

in this case you can imagine that U and U † will cancel on each end of the SWAP operator.
Mathematicians have proven in our favor that these two maps are the only one invariant under this
operation, so we can write

T = proj Span{I, F} (15.377)

with respect to the Hilbert-Schmit inner product, where

⟨A,B⟩ = TrA†B. (15.378)

One problem, however, is that I and F are not orthogonal. The better choices are

Π± =
I ± F

2
(15.379)



where Π± projects to the ±1 eigenstates of F , which is the symmetric (+1) and antisymmetric
(−1) subspace. The symmetric/antisymmetric subspace, as we learned before, has dimension

TrΠ± =
d(d± 1)

2

. This way we can rewrite

T (X) =
Tr{XΠ+}
TrΠ+

Pi+ +
Tr{XΠ−}
TrΠ−

Pi− (15.380)

Note with d = 2, Π+ gives you the projection onto the triplet state, and Π− gives you projection
to the singlet state.

15.1.1 Random Cliffords

In this subsection, we show that random Clifford gates are a unitary 2−design.
Because general matrix can be written as a combination of Paulis, we can just analyze how

Cliffords would act on Paulis.

EU∈Clifford (U ⊗ U)σp ⊗ σq(U ⊗ U)† =


0 if p ̸= q

I if p = q = 0n∑
r ̸=0n

σr⊗σr
4n−1 if p = q ̸= 0n

(15.381)

Recall from last lecture, we know that∑
r ̸=0n

σr ⊗ σr = 2nF − I. (15.382)

We can see here is that, whatever comes in, you just get a combination of I and F , basically what
you want from a 2−design.

15-5
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16.0 Context and recap from last few lectures

In the last several lectures, we’ve been discussing random states/unitaries as well as state/unitary
k-designs. In particular, in order to even be able to talk about constructing these designs, we need
to understand what we’re even trying to achieve: that is, what the moments of truly random states
and unitaries are. For random states, we directly computed these using some Gaussian integration
tricks.

In this lecture, we’ll build the background for a more principled approach to these calculations.

16.1 What we know about unitary k-designs

For 1 designs, we have the Pauli ensemble, and for 2-designs we know that random cliffords or free
fermion rotations work (though we haven’t done a proof yet for the 2-design claims).

Note that we also actually know that random Cliffords are at least 3 designs (and sometimes
4 designs for some d, where d is the dimension of your hilbert space)

Random circuits for larger k

For larger k, we don’t have a systematic way of constructing exact k-designs. One approach to
approximate k-designs is using random circuits.

Proposition 16.1.1 (informal). If you place independent Haar random 2-qubit gates in a brickwork
circuit in 1D with depth npoly(k) log 1

ϵ , then this is an ϵ approximate k-design.

Comments

• One can also often get away with choosing the 2 qubit gates uniformly from any uni-
versal gate set.

• Aram made the comment that for most purposes, 2 designs are sufficient, although
higher k can improve on things like concentration of entanglement entropy

• Are there interesting state designs which don’t come from unitary designs (since all the
ones we’ve seen so far do come from unitary designs)? It turns out that there’s a nice
class of examples called phase states which are defined as

1√
2n

2n−1∑
x=0

eiϕ(x) |x⟩

for some choice of ϕ. These are nice for applications because they’re often efficiently
computable. E.g. they’re used in Ji, Liu, Song 2018 as a construction of pseudorandom
quantum states.
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16.2 Representation Theory

Here, we’ll present the basics of representation theory, motivated by this connection we’ve observed
previously between invariant subspaces and randomizing maps.

16.2.1 What is a representation?

Definition 16.2.1 (Representation). A representation (R, V ) for a group G is a homomorphism
R : G → Aut(V ) that sends a group to an operator on V . Homomorphism meaning that for
any g, h ∈ G, R(gh) = R(g)R(h) where on the RHS multiplication just means standard matrix
multiplication/function composition.

It turns out WLOG, we can take R : G→ U(V ) do only use unitary operators

It’s common practice to refer to a representation just by its vector space V .

16.2.2 Basic definitions

Equivalence. We say two representations (R1, V1), (R2, V2) are equivalent if there exists an in-
vertible T : V1 → V2 such that for every g ∈ G,

TR1(g) = R2(g)T
−1

That is, if there exists a uniform change of basis that takes all your R1(g)s to R2(g)s.

Reducibility. We say that a representation is reducible if there’s a basis in which every repre-
sentation R(g) is block diagonal.

Equivalently, a representation is reducible if it has an invariant subspace. That is, if there’s a
non-trivial linear subspace W ⊂ V s.t. ∀g,R(g)W =W .

Irreducible Representations (Irreps). A representation is called irreducible if....... it is not
reducible!

Let Ĝ denote all the irreducible representations of a group G.
Any representation can be decomposed into irreducible representations as

V ∼=
∑
λ∈Ĝ

Vλ ⊗ Cmλ

where mλ is an integer denoting the multiplicity of irrep λ.

Group algebra. In particular, the group algebra C[G] is a representation with

• orthonormal basis vectors {|g⟩ : g ∈ G}

• RL(x)(g) = |xg⟩

• We label this with L, because there’s also actually a right action RR(x)(g) = |gx−1⟩
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The following is an important fact:

C[G] =
⊕
λ∈Ĝ

Vλ ⊗ V ∗λ

One quick consequence of this is that dim(C[G]) =
∑

λ dim(Vλ)
2

Note that this can be somewhat seen as a consequence of the existance of these two represen-
tations RL and RR which commute with each other.

Dual representation

(R∗, V ∗) is defined by R∗(g) = R(g−1)T . For example, if you take the representation U →
U⊗n, then the dual representation is U → (U∗)o×n where U∗ is the complex conjugate (as
opposed to conjugate transpose).

16.2.3 Group/Quantum Fourier Transform

Abelian fourier transform stated in fancy language. For an abelian group A, all its irre-
ducible representations are one dimensional. This is because, since all the matrices in the repre-
sentation commute with each other, they are all simultaneously diagonalizable, and so every basis
vector gives an invariant subspace. Applying the yellow box above, this in particular means that
|Ĝ| = |G|.

The fourier transform can be written as:

Definition 16.2.2 (Abelian fourier transform). Let A be a finite abelian group, and {Rλ}λ ∈ Â
its irreducible representations. The fourier transform maps basis states as follows:

|a⟩ 7→ 1√
|A|

∑
λ∈Â

Rλ(a) |λ⟩

This can be inverted by:

|λ⟩ 7→ 1√
|A|

∑
a∈A

Rλ(a)
∗ |a⟩

The unitarity of this transform is equivalent to the fact that these Rλs are mutually orthogonal.

Quantum/non-abelian version The reason the abelian setting was so nice was that, because
|A| = |Â|, there was a natural way to get a basis out of the set of representations.

In general, this is not the case (any non-abelian group will have at least one higher dimensional
representation). Instead, each λ gives us a (dimVλ)

2 dimensional space, and we pick some particular
basis for each.

Definition 16.2.3 (Group fourier transform). Let G be a finite group, and {Rλ}λ∈Ĝ its irreducible
representations. The group fourier transform maps basis states as follows:

|g⟩ 7→ 1√
|G|

∑
λ∈Ĝ

|λ⟩ ⊗
∑

i,j∈[dimVλ]

Rλ(g)ij |i⟩ ⊗ |j⟩



where Rλ(g)ij refers to the i, j matrix entropy of the representation.
The inverse fourier transform maps:

|λ⟩ |i⟩ |j⟩ 7→ 1√
|G|

∑
g

Rλ(g)ij |g⟩

Unitary follows from the Schur orthogonality relations, which tell us that the set of {(Rλ(g)ij)g}λ,i,j
are all mutually orthogonal.

16.2.4 Schur’s Lemma and the kth moments of a random state

In the last part of the lecture, we’ll circle back to random states. In particular, we’ll use Schur’s
lemma to prove that the kth moment of a random state is indeed the (normalized) projector onto
the symmetric subspace.

Lemma 16.2.1 (Schur’s Lemma). Let Vµ, Vν be irreps of G. Let L(Vµ, Vν)
G be the set of G

invariant maps from Vµ to Vν (that is, maps which preserve the group action). There are two
possibilities:

1. If µ ∼= ν, then L(Vµ, Vν)
G = CI (i.e. the set of all scalar multiples of the identity)

2. Otherwise, L(Vµ, Vν)
G = 0

In particular, this tells us that for any irrep Vµ, the only linear transform which commutes with
all of the representations is the identity.

This let’s us obtain as a corollary the kth moments of a random state.

Corollary 16.2.1.

E[|ψ⟩ ⟨ψ|⊗k] = Πsym
TrΠsym

Proof. First we observe that E[|ψ⟩ ⟨ψ|⊗k] commutes with U⊗k for any U .

U⊗k E[|ψ⟩ ⟨ψ|⊗k]U †⊗k = E[U⊗k |ψ⟩ ⟨ψ|⊗k U †⊗k]
= E[|ψ⟩ ⟨ψ|⊗k]

This implies that E[|ψ⟩ ⟨ψ|⊗k] must act proportionally to the identity on an irrep of the repre-
sentation U⊗k.

Next, we observe that

Πsym E[|ψ⟩ ⟨ψ|⊗k] = E[|ψ⟩ ⟨ψ|⊗k]Πsym = E[|ψ⟩ ⟨ψ|⊗k]

This implies that E[|ψ⟩ ⟨ψ|⊗k] only acts non-trivially on the symmetric subspace.
Finally, we use without proof the fact that (U⊗k, SymkCd) is an irreducible representation to

conclude that E[|ψ⟩ ⟨ψ|⊗k] must be proportional to the identity on the symmetric subspace (i.e.
Πsym).

16-4
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17.1 Representation Theory Continued

This lecture continues discussion of representation theory for unitary group and it’s relation to
random unitaries. Recall statement, claimed without proof, from the last lecture that allowed us
to show that E |ψ⟩ ⟨ψ|⊗n =

Πsym

trΠsym
:

Lemma 17.1.1.

(U⊗n, SymnCd) is an irreducible representation (irrep) of U(d)

Here SymnCd is a symmetric subspace:

SymnCd = {|ψ⟩ ∈ Cd⊗n : Pπ |ψ⟩ = |ψ⟩ ∀n ∈ Sn}

Proof. To show that (U⊗n, SymnCd) is an irrep, we first can notice that it’s clearly a represen-
tation; and symmetric subspace, when acted on by U⊗n, stays in symmetric subspace. Claim
(U⊗n, SymnCd) is an irrep is equivalent to saying that no invariant subspace exist (W ⊂ SymnCd :
∀U, U⊗nW =W ).
If symmetric subspace was reducable and in some basis U⊗n it is block-diagonal, we could have
selected ψ from different blocks and for any U⊗n inner product would have been 0. Conversely, the
statement below is equivalent to the lemma formulation:

∀ |ψ1⟩ , |ψ2⟩ ∈ SymnCd/0 ∃U , s.t. ⟨ψ1|U⊗n |ψ2⟩ ̸= 0

One way to show this involves using E |ϕ⟩ ⟨ϕ|⊗n =
Πsym

trΠsym
. While to prove this fact we relied on

lemma 17.1.1., it can also be shown by Gaussian integration, so this isn’t a circular reasoning.
If we restrict |ψi⟩ = |ϕi⟩⊗n, the statement becomes trivial, since it’s enough to set U |ϕ2⟩ = |ϕ1⟩.
Symmetric subspace, however, is larger than tensor states and includes their superposition. For
the next step, recall that in symmetric subspace: |ψi⟩ ∝ Πsym |ψi⟩ ∝ E |ϕ⟩ ⟨ϕ|⊗n |ψi⟩ (from here
we’ll ignore normalization for simplicity). Under some k-design, it’s a superposition of finite tensor-
product states. This tells us:

∃ |ϕi⟩ , s.t. ⟨ψi| |ϕi⟩⊗n ̸= 0 i = {1, 2}

Without loss of generality, by selecting basis, take |ϕ1⟩ = |1⟩. Now consider random unitary of
form:

V =

(
1 0

0 U(d− 1)

)
⇒ V |ϕ1⟩ = |ϕ1⟩

Then V acts on |ψ1⟩ proportionally to |1⟩⊗n; and since everything else is averaged away, we can
claim:

EV V ⊗n ∝ |ϕ1⟩⊗n
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Similarly, we can choose some W , s.t.:

EWW⊗n ∝ |ϕ2⟩⊗n

Finally, we can simply pick some U that translates |ϕ1⟩ to |ϕ2⟩. By averaging away all the con-
structed unitaries (V,W ) we get:

EU ⟨ψ1|U⊗n |ψ2⟩ ̸= 0

Since average is non-zero, there certainly exists some deterministic unitary, s.t. inner product is
non-zero. Therefore, symetric subspace is an irrep.

17.2 Physics Application

Here we’ll briefly discuss how symmetric and anti-symmetric subspaces relate to space of bosons
(represent forces) and fermions (represent matter).
Suppose you have n bosons in d bosonic modes (e.g. harmonic oscillator). Each one of them lives
in Cd space. Then n bosons can be described by SymnCd subspace. In contrast, n distinguishable
particles live in space (Cd)⊗n.
This idea is used in quantum information processing based on photons as qubits. For example,
in linear optical quantum computing with n photons amount of degrees of freedom is limited by
SymnCd.
In opposite, n fermions in d modes stay in anti-symmetric subspace:

AntinCd = {|ψ⟩ ∈ Cd⊗n : Pπ |ψ⟩ = sgn(π) |ψ⟩ ∀n ∈ Sn}

This relates to Pauli exclusion principle - no two fermions exist in the exact same state - so that
projection of tensor state onto anti-symmetric subspace is zero.
Consider special case of n = 2:

Cd ⊗ Cd = Sym2Cd ⊕Anti2Cd

This can also be seen from the perspective of dimensions:

dim SymnCd + dim AntinCd =
(
d+ n− 1

n

)
+

(
d

n

)
=
d(d+ 1)

2
+
d(d− 1)

2
= d2

For n = 3, however, this is no longer true:

(Cd)⊗3 = Sym3Cd ⊕Anti3Cd ⊕ ’something else’

For d = 2, for instance, AntinCd = ∅, symmetric subspace has dimension 4 and corresponds to spin
3/2, therefore, the rest (’something else’) must represent part with spin 1/2. Generally, (’something
else’) part can be described by Schur-Weyl duality.

17.3 Schur-Weyl duality

Schur-Weyl Duality is a theorem that relates the irreducible representation of Schur-Weyl Duality
is a theorem that relates the irreducible representation of finite dimensional general linear group
(in this part, we focus on the unitary group) and symmetric group.
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Consider a tensor space with n particles:

Cd ⊗ Cd ⊗ ...⊗ Cd (17.383)

The two actions that can be applied on this tensor space are:

qn(U) = U⊗n, qn(U)(v1 ⊗ v2 ⊗ ...⊗ vn) = Uv1 ⊗ ...⊗ Uvn (17.384)

Pd(π) = P (d)
π , Pd(π)(v1 ⊗ v2 ⊗ ...⊗ vn) = vπ−1(1) ⊗ ...⊗ vπ−1(n) (17.385)

The two actions commute, [qn(U), Pd(π)] = 0. And, the Schur-Weyl Duality asserts that:

(Cd)⊗n ∼= ⊕
λ
Q

(d)
λ ⊗ Pλ (17.386)

where Q
(d)
λ is an irreducible representation of U(d), and Pλ is an irreducible representation of Sn.

Generally, the decomposition of (Cd)⊗n can be written as (Cd)⊗n = ⊕
λ
Q

(d)
λ ⊗ Pλ ⊗ CMλ . But

specifically for the group that we are considering, Schur-Weyl duality applies.
Here, λ runs over all partition of n with d parts. Par(n, d) = {(λ1, ..., λd) ∈ Zd, λ1 ≥ λ2 ≥ ... ≥

λd ≥ 0, λ1 + ...+ λd = n}. Each partition can be represented by a Young diagram.
For example: n = 1, λ = (1):

For n = 2, λ = (2), (1, 1)

(a) λ = (2) (b) λ = (1, 1)

Figure 17.8: Young diagrams for n = 2 case.

For n = 3, λ = (3), (2, 1), (1, 1, 1):

(a) λ = (3) (b) λ = (2, 1)

(c) λ = (1, 1, 1)

Figure 17.9: Young diagrams for n = 3 case.

Young tableau is obtained by filling in the boxes of the Young diagram with symbols taken
from some alphabet. Specifically, a tableau is called standard if the entries in each row and each
column are increasing and is called semi-standard if entries weakly increase along each row and
strictly increase down each column.



1 2

3

(a) Standard Young Tableau (SYT)

1 1

2

(b) Semi-Standard Young Tableau (SSYT)

Figure 17.10: Comparison of Two Young Tableaux for λ = (2, 1).

The irreducible representation of Sn defines the symmetry of vectors under permutation. Basi-
cally, the vectors with labels on the same row are symmetric under permutation and anti-symmetric
under permutation for vectors with labels on the same column. Similarly, the irreducible repre-
sentation of U(d) labeled by a given Young diagram has the symmetry of the irrep of Sn with the
same Young diagram, where n is the number of boxes in the diagram. The Young diagram of an
irrep of U(d) has at most d rows. Therefore, basis for Pλ is indexed by SYT, since it correspond to

fill in n boxes with n different alphabet words following rules of SYT. Basis for Q
(d)
λ correspond to

filling in n boxes with d different alphabet words following rules of SSYT. For a Young Diagram of
a single row, the irrep is completely symmetric; for a Young diagram of a single column, the irrep
is anti-symmetric; for a Young diagram of a mixture of rows and columns, the irrep has mixed
symmetry. Therefore, for λ = (n), dim(Qλ) = dim(V nCd) =

(
n+d−1
n

)
, while for λ = (1, ..., 1) with

d ≥ n, dim(Qλ) =
(
d
n

)
.

Following the same example as above, we consider the case: λ = (2, 1), n = 3, d = 2:

1 2

3

1 3

2

Figure 17.11: dim(Pλ) = 2 (SYT).

1 1

2

1 3

2

Figure 17.12: dim(Q
(d)
λ ) = 2 (SSYT).

Quantum analogue of types: For fixed d and n ≈ ∞: dim(Par(n, d)) ∼ nd. dim(Q
(d)
λ ) ∼ nd

2
.

dim(Pλ) ∼ exp(nH(Xn)).

17-4
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Lecture 18: November 7, 2024

Scribe: Ruoyi Yin Algorithms for Semidefinite Programming

The lecture is based on the paper arXiv: 1909.04613. The paper develops a quantum algorithm
for faster semidefinite programming problem for binary quadratic optimization.

Base Problem

Problem Statement: Quadratic optimization problems with binary constraints are formulated
as: for a (real-valued) symmetric n× n matrix A, compute:

max ⟨x,Ax⟩ = tr(Axx∗)

subject to
x ∈ {−1, 1}n

where x ∈ Rn.
This task has applications for solving many important problems, such as:

• MaxCut: Largest cut in a graph.

• Community Detection: Dividing a network into sets of nodes corresponding to two com-
munities.

18.1 Relaxation Approach

The strategy used to speed up this optimization algorithm can be broken down into three phases:

• Phase I: Relax the Problem: Since the problem is NP-hard in the worst case, we relax it
to something more manageable.

• Phase II: Optimization Problem → Feasibility Problem: Convert the optimization
problem into a feasibility problem by formulating constraints.

• Phase III: Quantum-Inspired Algorithm: Develop quantum algorithm to solve the prob-
lem.

18.1.1 Phase I: Problem Relaxation and Rescaling

The set Sn consists of n× n positive semidefinite (PSD) matrices:

Sn = {X : xx∗ = X,X ⪰ 0}.

SDP Relaxation:
max
X∈Sn

tr(AX) s.t. X ⪰ 0, diag(X) = 1⃗

Rescaling

max
X∈Sn

tr(ÃX), Ã =
1

||A||
A s.t. X ⪰ 0, diag(X) =

1

n
1⃗, tr(X) = 1
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Remark:

(i) This is a special case of convex optimization problems:

max f(X) = tr(ÃX)

X ∈ C1 ∩ C2, where

C1 =
{
x : diag(x) =

1

n

}
affine subspace

C2 = {x : x ⪰ 0} convex cone

(ii) The algorithm will work for a more general class of convex optimization problem: for a
bounded, concave function f(X), and C1, ..., Cn are closed convex sets:

max f(X) = tr(ÃX)

subject to:
X ∈ C1 ∩ ... ∩ Cn, tr(X) = 1, X ≥ 0.

18.1.2 Phase II: Feasibility Problem

The feasibility problem involves finding X ∈ Sn such that:

tr(ÃX) ≥ λ, diag(X) = 1, tr(X) = 1, X ⪰ 0.

By wrapping this task into an outer loop where we binary search the interval to choose value of λ,
we only need log(1/ϵ) queries to get multiplicative ϵ-approximation.

18.1.3 Phase III: Quantum-Inspired Change of Variable

X =
e−H

tr(e−H)
∈ Sn (Gibbs state)

- ensures X is PSD, trace 1.
New Problem:

Let Ã =
A

∥A∥
, find H ∈ Sn

s.t. tr(ÃρH) ≤ λ (ρH ∈ Aλ)

diag(ρH) =
I

n
(ρH ∈ Dn)

Again: We can solve this for any number of convex constraints.

18.2 The Algorithm

18.2.1 Oracle Access

Def (ϵ-separation oracle): contains every line segment between two points in the set.
Let:

C ⊂ Sn be a closed, convex subset of quantum states,

C∗ = {X = X† ∈ Cn×n : ∥X∥ ≤ 1} closed, convex subset of observables, “tests”
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OC,ϵ(ρ) =


accept ρ if min

Y ∈E
max
P∈C∗

tr(P (ρ− Y )) ≤ ϵ

Interpretation: observables from C∗ cannot distinguish ρ from elements of C
else: output P ∈ C∗ such that tr(P (ρ− Y )) ≥ ϵ

2 ∀Y ∈ E
Interpretation: there’s an observable to which ρ looks different from all states in C.

Intuition:

ρ

C

P
(C∗ = set of planes)

If an oracle told me P , I can always improve my guess to push toward.

18.2.2 Hamiltonian Updates

Start with H = 0 (“infinite temperature”), ρH = I/n.
For t = 1, ..., T ,

• check if ρH ∈ Aλ and ρH ∈ Dn by querying OAλ,ϵ, ODλ,ϵ

– if true, we are done

– Else: update H to penalize infeasible directions. Given the separating hyperplane P ,

update H ← h+
ϵ

16
P

• ρH ←
e−H

tr(e−H)
.

Theorem 2.1(arXiv: 1909.04613) Hamiltonian updates find an approximately feasible point in at
most:

T = ⌈64log(n)
ϵ2
⌉+ 1
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iterations, otherwise the problem is declared infeasible.
Proof Ideas:
The relative entropy between ρ0 = I/n and any feasible point ρ∗ is bounded:

S(ρ ∗ ||ρ0) ≤ log(n) (18.387)

We want to show that each iteration makes constant progress in relative entropy: (let ρ∗ =
feasible point).

S(ρ ∗ ||ρt+1)− S(ρ ∗ ||ρt) ≤ −
ϵ2

64
(18.388)

Convergence occurs after at most T steps or S(ρ∗||ρτ ) < 0, which is impossible by the definition
of relative entropy.

Proof Procedures:

Suppose there exists a feasible point ρ∗. Let

ρt =
exp(−Ht)

Tr(exp(−Ht))
. (18.389)

Distance at time t = 0:

S(ρ∗∥ρ0) = Tr(ρ∗(log ρ∗ − log ρ0)) ≤ log(n). (18.390)

Improvement at every step:

S(ρ∗∥ρt)− S(ρ∗∥ρt+1) = Tr(ρ∗(log ρt − log ρt+1)). (18.391)

Expanding:

Tr(ρ∗(log ρt − log ρt+1)) = Tr (ρ∗ (−Ht − log Tr(exp(−Ht)) +Ht+1 + logTr(exp(−Ht+1)))) .
(18.392)

Simplify:

= Tr(ρ∗(Ht+1 −Ht)) + log

(
Tr(exp(−Ht+1))

Tr(exp(−Ht))

)
. (18.393)

Recall update step:

Ht+1 = Ht +
ϵ

16
Pt. (18.394)

Substituting:

=
ϵ

16
Tr(ρ∗Pt)− log

(
Tr
(
exp
(
−Ht+1 +

ϵ
16Pt

))
Tr(exp(−Ht+1))

)
. (18.395)

This term (the second part) is labeled as the ”bad boi”, which we will work out in detail:

log

(
Tr
(
exp
(
−Ht+1 +

ϵ
16Pt

))
Tr(exp(−Ht+1))

)
. (18.396)



Useful Facts to Analyze ”Bad Boi”

1. Peierls-Bogoliubov inequality:

log(Tr(exp(F +G))) ≥ Tr(F exp(G)). (18.397)

2. Trace scaling with scalar:

Tr

(
exp(−H)

c

)
= Tr

(
exp(−H) · e− log cI

)
= Tr (exp (−H − (log c)I)) . (18.398)

Analyzing ”Bad Boi”

By fact (2), ”bad boi” becomes:

log
(
Tr
(
exp

(
−Ht+1 − log (Tr(exp(−Ht+1))) I +

ϵ

16
Pt

)))
. (18.399)

By fact (1):

≥ Tr
( ϵ
16
Pt · exp (−Ht+1 − log (Tr(exp(−Ht+1))) I)

)
. (18.400)

Simplify:

=
ϵ

16
Tr

(
Pt ·

exp(−Ht+1)

Tr(exp(−Ht+1))

)
=

ϵ

16
Tr(Ptρt+1). (18.401)

Continuing from Earlier:

S(ρ∗∥ρt+1)− S(ρ∗∥ρt) =
ϵ

16
Tr (Pt(ρ

∗ − ρt+1)) (18.402)

≤ ϵ

16
Tr(Pt(ρt − ρt+1))−

ϵ

16
Tr(Pt(ρt − ρ∗)) (18.403)

≤ ϵ

16
(||Pt|| ||ρt − ρt+1||tr −

ϵ

2
) (18.404)

Using the fact that for Hermitian matrices H1, H2:∥∥∥∥ exp(H1)

Tr(exp(H1))
− exp(H2)

Tr(exp(H2))

∥∥∥∥
1

≤ 2(exp (∥H1 −H2∥)− 1) , (18.405)

we have:

∥ρt − ρt+1∥1 ≤ 2

(
exp

( ϵ
16
∥Pt∥

)
− 1

)
. (18.406)

Since ∥Pt∥ ≤ 1, this simplifies to:

∥ρt − ρt+1∥1 ≤
ϵ

4
. (18.407)

Substituting back:

S(ρ∗∥ρt+1)− S(ρ∗∥ρt) ≤
ϵ

16

( ϵ
4
− ϵ

2

)
= − ϵ

2

64
. (18.408)

18-5
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Lecture 21: November 19

Scribe: Ruohan Shen Monogamy of Entanglement and de Finetti Theorem

This lecture explores the concept of quantum entanglement monogamy, emphasizing that, unlike
classical correlations, quantum correlations cannot be freely shared among multiple parties. After
presenting some intuitive arguments, the de Finetti theorem is introduced to provide a more rigorous
foundation for this principle.

21.1 Monogamy of entanglement

If two regions are maximally entangled, their density matrix is represented Φ. Now consider the
following question: Does there exist a density matrix ρABC , such that the two reduced density
matrices ρAB = ρAC = Φ are both maximally entangled? The answer is no. If ρAB = Φ, then the
subsystems AB are in a pure state. For AB to be entangled with C, the reduced density matrix of
AB must be a mixed state. Hence, ρABC must take the form ΦAB ⊗ ρC . Consequently, ρAC cannot
be entangled. This demonstrates the fundamental principle that quantum correlations arising from
entanglement cannot be shared simultaneously among multiple parties.

Then we consider a similar question: can we find a ρABC such that ρAB = ρAC = ω, where
ω = 1

2 (|00⟩ ⟨00|+ |11⟩ ⟨11|) represents a classical mixture? This time, the answer is YES. The GHZ
state 1

2 (|000⟩+ |111⟩) satisfies the condition. This demonstrates that classical correlations, unlike
quantum entanglement, can be freely shared among multiple parties.

Next, we apply this principle to justify a widely used tool in many-body physics: mean-field
theory. Consider a local Hamiltonian of the form:

H =
∑
i<j

hij (21.409)

which is a sum of two-body operators, and the Hamiltonian is invariant under permutations of
the sites. By “local,” we mean that each term in the Hamiltonian acts on a limited number of
sites; however, this does not imply geometric locality. Thus, the Hamiltonian H is, in general,
fully connected, meaning that interactions can span the entire system. We denote the ground
state of this Hamiltonian as |φgs⟩, which corresponds to the eigenstate with the lowest eigenvalue.
Without loss of generality, we assume that the ground state’s density matrix commutes with any
permutation operator:

[Pπ, φgs] = 0, ∀π ∈ Sn (21.410)

This assumption implies that the ground state is unique and possesses full permutation symmetry.
Equivalently, we assume that there is no additional symmetry or degeneracy in the system that
could lead to multiple ground states.

Mean-field theory posits that the reduced density matrix of the ground state on s sites can be
approximated as:

φsgs ≈ ρ⊗s (21.411)

for some single-site density matrix ρ, provided |s| ≪ n. This approximation is justified by the
principle of entanglement monogamy. Regardless of how connected the Hamiltonian is, the entan-
glement within any small subsystem is distributed across its interaction with the rest of the system.
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For small regions of the state, the total amount of entanglement is bounded by the size of the sub-
system itself. Consequently, the entanglement within such a region is effectively “diluted” over its
interactions with other parts of the system, resulting in the appearance of weak correlations. As a
result, the sites in the subsystem behave approximately as though they are decoupled, leading to
the product state approximation ρ⊗s .

Remark 21.1.1. Consider a symmetry of the Hamiltonian:

UHU † = H (21.412)

If it has a unique ground state H |φgs⟩ = E0 |φgs⟩, then applying U to the ground state reproduce
another ground state:

HU |φgs⟩ = UH |φgs⟩ = E0U |φgs⟩ (21.413)

Since we assume that the ground state is unique, we must have U |φgs⟩ = λ |φgs⟩. If U represents
a permutation operator, it is well-known that its eigenvalues are restricted to ±1. Therefore, the
unique ground state of a permutation-invariant Hamiltonian must be either symmetric or anti-
symmetric.

21.2 de Finetti Theorem

In this section, we prove the de Finetti theorem, which makes the ’monogamy of entanglement’
more precise.

Theorem 21.2.1 (Quantum de Finetti Theorem). Given a density matrix ρA1...An ∈ Ddn that is
invariant under permutation:

[ρA1...An , Pπ] = 0, ∀π ∈ Sn (21.414)

Then there exists a measure µ in Ddn such that:∣∣∣∣∣∣∣∣ρA1...Ak
−
∫
dµ(σ)σ⊗k

∣∣∣∣∣∣∣∣
1

≤ dk

n
(21.415)

The theorem can be interpreted as: in a small subregion, the reduced density matrix looks like
a classical mixture of classical product states.

There’s also a classical version of this theorem.

Theorem 21.2.2 (Classical de Finetti Theorem). If a n-variable probability distribution satisfies:

p(z1, . . . , zn) = p(zπ(1), . . . , zπ(n)), ∀π ∈ Sn (21.416)

Then there exists a measure µ in the space of distributions such that:

p(z1, . . . , zk) =

∫
dµ(q)q(z1) . . . q(zk) (21.417)

Philosophically, the classical version justifies the use of i.i.d. distribution. It says that if the
distribution is permutation-invariant, than it must look like something i.i.d.

The proof of the quantum de Finetti theorem proceeds in two steps: first, we establish the
pure-state de Finetti theorem; then, we demonstrate how the general quantum de Finetti theorem
can be reduced to the pure-state case.
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Theorem 21.2.3 (Pure state de Finetti theorem). For a pure state |ψ⟩ ∈ Symn+kCd, there exists
a measure µ on the space of pure states such that

F

(
Trn ψ,

∫
dµ(ϕ)ϕ⊗k

)2

≥ 1− dk

n
(21.418)

Proof. Recall the identity

Eϕ∼Haarϕ
n =

Π
(n)
sym

d[n]
(21.419)

where d[n] =

(
d+ n− 1

n

)
. This identity can be interpreted as stating that ϕ forms an (over)complete

basis in the symmetric subspace (up to a normalization factor). This is analogous to the coherent
states, where

∫
dα
2π |α⟩ ⟨α| = I. Using this idea, we can attempt to decompose the reduced density

matrix Trn ψ using ϕ as a basis. Define the POVM Mϕ = ϕnd[n] that satisfies
∫
dϕMϕ = I. Then,

we can express

Trn ψ =

∫
dϕ Trn [(Mϕ ⊗ I)ψ] (21.420)

=

∫
dϕ p(ϕ)ψϕ (21.421)

where ψϕ is the normalized density matrix after measuring ϕ. We expect ψϕ ≈ ϕ⊗k, and this de-
composition naturally provides a representation of Trn ψ as a “classical mixture of product states.”
To make this intuition rigorous, we calculate the fidelity, allowing us to precisely quantify how well
ψϕ approximates ϕ⊗k.

F

(
Trn ψ,

∫
dϕ p(ϕ)ϕ⊗k

)2

= F

(∫
dϕ p(ϕ)ψϕ,

∫
dϕ p(ϕ)ϕ⊗k

)2

(21.422)

≥
∫
dϕ p(ϕ)F

(
ψϕ, ϕ

⊗k
)2

(21.423)

=

∫
dϕ Trk

([
Trn

(
d[n]ϕ⊗n ⊗ Ik

)
ψ
]
ϕ⊗k

)
(21.424)

=

∫
dϕ Tr

[
ϕ⊗n+kψ

]
d[n] (21.425)

=
Tr
[
Π

(n+k)
sym ψ

]
d[n+ k]

d[n] (21.426)

=
d[n]

d[n+ k]
≥ 1− dk

n
(21.427)

This concludes the proof.

Then we start to prove the quantum de Finetti theorem:

Proof. For any symmetric density matrix ρA1...An that satisfies (21.414), we can find a symmetric
purification:

|ψ⟩A1B1...AnBn
∈ Symn(A⊗B) (21.428)

Here, the symmetric subspace is defined for the representation π → PπA ⊗ PπB , and each lo-
cal site now has dimension d2 = dAidBi correspondingly. Clearly, the canonical purification
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(√
ρ
A
⊗ IB

)√
dn |Φ⟩AB satisfies this condition. Then, we apply the pure state de Finetti theo-

rem to the state |ψ⟩AB and get

F

(
Trn−k ψAB,

∫
dµ(ϕ)ϕ⊗k

)2

≥ 1− d2k

n− k
(21.429)

By tracing out system B, we get

F

(
Trn−k ψA,

∫
dµ(ϕ) (TrBi ϕ)

⊗k
)2

≥ F
(
Trn−k ψAB,

∫
dµ(ϕ)ϕ⊗k

)2

(21.430)

And because T ≤
√
1− F 2, we put everything together, we get∣∣∣∣∣∣∣∣ρA1...Ak
−
∫
dµ(ϕ)ϕ⊗kA

∣∣∣∣∣∣∣∣
1

≤
∥∥∥∥ρA1B1...AkBk

−
∫
dµ(ϕ)ϕ⊗k

∥∥∥∥
1

(21.431)

≤ 2

√
1− F

(
ρA1B1...AkBk

,

∫
dµ(ϕ)ϕ⊗k

)2

(21.432)

≤ 2

√
d2k

n− k
(21.433)

Note that this bound is weaker than Theorem 21.2.1. However, it represents the best achievable
result using this method. Establishing Theorem 21.2.1 needs a more sophisticated and intricate
approach. Interested readers are encouraged to consult Corollary 1 of arXiv:1010.1875 or Watrous’s
notes for further details.

21.3 Application

21.3.1 QKD

Conventional QKD protocols typically prove security under the assumption of independent and
identically distributed (i.i.d.) noise, leaving their security unproven for correlated noise. However,
since these protocols treat bits symmetrically, the de Finetti theorem can be employed to reduce
Eve’s general attack to a mixture of i.i.d. attacks, thereby providing a way to bound the error rate
even in the presence of correlations.

To elaborate, we present the de Finetti reduction. Assume the density matrix [ρA1...An , Pπ] = 0
is symmetric under any permutation π ∈ Sn. Then there exists a measure µ such that

ρA1...An ≤ nO(d2)

∫
dµ(σ)σ⊗n (21.434)

The proof is straightforward. Consider a purification |ψ⟩ ∈ Symn(A⊗B). We observe that:

ψ ≤ Πd
2,n
sym = d2[n]

∫
dϕϕ⊗n (21.435)

Since d2[n] ≤ nO(d2), we conclude the proof. This has practical significance: if TrMσ ≤ ϵ, then
TrMρ ≤ nO(d2)ϵ.

https://arxiv.org/abs/1010.1875
https://johnwatrous.com/wp-content/uploads/TQI-notes.22.pdf
https://johnwatrous.com/wp-content/uploads/TQI-notes.22.pdf
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21.3.2 Optimization

Define the set of separable states as:

Sep = Sep(dA, dB) = conv{α⊗ β : α ∈ DdA , β ∈ DdB} (21.436)

For simplicity, we will take dA = dB in the following.
We further define the support function as follows:

hSep(M) = max
σ∈Sep

Tr [Mσ] (21.437)

which can be interpreted as the maximum overlap of the observable M with any separable state
σ . Equivalently, this represents the highest probability of obtaining an outcome consistent with
separable states when performing a measurement described by M .

The problem can be made easier if we restrict the search space to only the symmetric separable
states:

hSepSym(M) = max
α

Tr [M (α⊗ α)] (21.438)

Next, we introduce the concept of k -extendable states. A bipartite density matrix ρAB is called
k -extendable if there exists a symmetric extension ρAB1...Bk

such that:

ρ̃ABi = ρAB (21.439)

The set of k-extendable states is nearly equivalent to the set of separable states, and when k is
larger, the difference is smaller. k-extenable states are much easier to calculate.
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