8.372 Quantum Information Science III Fall 2024

Lecture 1: September 5, 2024

Scribe: David D. Dai Bit commitment and purifications

1.1 Class Introduction
Topics
1. Quantum information theory and its mathematical foundations
2. Basic tools: norms, randomness, quantum entropies, and symmetry (group representations)

3. Applications: cryptography, many-body physics, optimization, and complexity / algorithms

Websites
1. Canvas: shell linking to everything else, email announcements
2. Piazza: discussion, questions (threaded conversations)
3. Gradescope: submit homework
4. Gitlab: lecture notes, homework problems

5. Overleaf: scribing

1.2 Information-Theoretically Secure Quantum Cryptography

Information-theoretically secure cryptography is secure against an adversary with infinite compu-
tational resources and time. This is stronger than security based on computational assumptions,
such as RSA, which is based on the hardness of factoring. Some primitives that we might want to
perform are:

1. Quantum key distribution: Alice and Bob want to share a secure random key and prevent
eavesdropper Eve from learning the key. The goal is for Alice and Bob to finish the protocol
with an identical key that Eve knows nothing about, or to abort.

2. Coin flipping: Alice and Bob are remote and need to simulate a fair coin flip. Letting the
probability that the coin is 1 be p, there are two cases:

e Strong: p € [% — € % + e} for some small € no matter what. Alice and Bob cannot bias
the coin in either direction.

e Weak: Alice can bias p € [% — € 1] and Bob can bias p € [0, % + e}. This is useful if
Alice prefers 0 and Bob prefers 1. For example, most people prefer to serve first in a

sports match.

3. Oblivious transfer: Alice has a database (xg,x1,x2,...), and Bob wants to access a specific
value z;. Bob doesn’t want to reveal i to Alice, and Alice doesn’t want to reveal the other
values in the database to Bob.
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4. Bit commitment: Alice writes a message, seals it in an envelope, and hands it to Bob (com-
mit phase). Bob cannot read the message by himself (hiding property). Later, Alice can
send instructions to Bob to reveal her earlier message (reveal phase). However, she cannot
change the message after having committed it earlier (binding property). After the protocol
concludes, Bob either learns the message (valid property) if nobody cheated, or he rejects.

Aside from quantum key distribution, all of these primitives have a similar trust model in which
both parties are potentially honest or potentially adversarial. This situation is known as “two-party
cryptography”. Not all of these primitives are independent: oblivious transfer > bit commitment
> strong coin flip > weak coin flip. Only weak coin flip and quantum key distribution are possible.

1.3 State Purification

The set of density matrices for a d-dimensional quantum system is:
Dy={pecC®™®:p>0,Trp=1}, (1.1)

where p > 0 means that p is positive semidefinite. Density matrices can be interpreted as a random
ensemble of pure states, or as the marginal resulting from looking only at a small subsystem of a
larger global pure state. In the marginal case, p4 = Trp(|Yap)®ap|), where [p4ap) is the global
pure state, pa is the density matrix for subsystem A, and Trp is the partial trace over the rest of
the composite system.

We are interested in the inverse problem: given some fixed p4, what is the set of all |[¢ap)
for which p4 is the reduced density matrix for subsystem A? Let d4 (dp) be the dimension of
subsystem A (B). Then the global pure states are:

[YaB) = Zcm ®5), Zrcm? (1.2)

The corresponding density matrix for subsystem A is:

pa = Trp([YapXvasl) (1.3)
—ZI@ k!ZOU\ )@ j) ZCU (il (') T @ |k) (1.4)

= [ch x| (1.5)
SYelell (1.6)

For all C, we can perform an SVD:
C=UDV' = py=CCT =UD?U". (1.7)

Except for the requirement that it be an isometry, V is unconstrained. D? is fixed because it
corresponds to p4’s eigenvectors. U is also fixed up to rotations within eigenspaces, i.e. U - UR
for unitary R such that RD = DR. Because R can be commuted through D as (UR)DV' =
UDRV' = UD(VRT, the freedom in U can be folded into the freedom in V.

Therefore, the set of all purifications of py is:

{ap =UDV': VIV =T} (1.8)
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where D and U are fixed by the eigen-decomposition p4 = UD?UT. The dimensions are:

dimU =da xr, (1.9)
dimD =r xr, (1.10)
dimV =dg x r, (1.11)

where 7 is the number of nonzero eigenvalues of p4. For some V; with dimV; = dp, X r and V3
with dim Vo = dp, X r, we can always find either an isometry W such that Vo = WV; or Vi = Wa.
To prove this, take dp, > dp, WLOG. We can always complete the basis using Gram-Schmidt
to create a dp, X dp, unitary V;, which has Vj as its first 7 columns. Additionally, use Gram-
Schmidt to create dp, X dp, isometry 172 that agrees with V5 in its first » columns. Then the
isometry between Vi and V5 is W = VngT. W clearly maps V; to Vo, and it is an isometry because

Wi = (LI = T BY = 1.

We can also see that an isometry performed on subsystem B does not change ps. In gen-
eral, we have:
UV |pag) =) CyUl)@Vj),
tj
= Z Uz'/iCijVj’j |Z/> ® |]/> ) (1.12)
i’ jj'
- Z [UCVT] ij 1) ® [7) -
tj
Since (CVT) (C’VT)Jr =C (VIV) Ot =CCt, I®V |ap) and [¢4p) are purifications of the same
PA-

Putting the two directions together, we have the theorem: [i4p) and |yap/) purify the same
density matrix p4 if and only if there exists some isometry W on the auxiliary spaces B and B’ such
that 14 @ W [Yap) = |vap) or Ia @ W |vap) = [ap). The backward direction is very intuitive.
Imagine that subsystem A is held by Alice on Earth, and subsystem B is held by Bob on Mars. By
causality, an action that Bob takes alone is undetectable by Alice, i.e. cannot affect Alice’s density
matrix.

1.4 Proof that (Perfect) Bit Commitment is Impossible

There are three pictures of quantum operations: trace-preserving completely positive maps, Kraus
operators, and isometries followed by partial traces. All are equivalent, and we use “isometry’
followed by partial trace” here for convenience. We can actually ignore the partial trace: there
is no difference between irreversibly throwing away the environment and merely not looking at it
again. Ignoring the partial trace also allows for the possibility that a dishonest player may keep
the environment and analyze it to gain an advantage instead of discarding it as instructed.

!An isometry V is a linear map from C%4 to C?5 for dg > da such that VIV = Iq,. It is norm-preserving.

Namely [[|¥)|| = ||V [4)], for any |¢) € C?4. One important fact is that VV' = Ip iff da = dp. A preliminary
example of an isometry is to add a qubit state: V : |[¢) — |¢) ® |0).
Moreoever, for a finite system (which is always what we consider), one can always extend the isometry V to an
unitary U : C*2 — C?8 such that U |[v) = W |v) for any v in the domain of V. Then in such a case a quantum
channel can be written as £(p) = Trg(VpV1) = Trg[U(p®|0) (0] ;)UT], where we have labeled the initial state of the
environment before the action of the quantum channel as |6} I
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Then after the commit phase, Alice and Bob share the global pure state WX)Q out of the
two choices {\w)%)g , \w)fj])g} for a committed (fixed) bit b. Because the protocol needs the hiding
property, we have equation? %(90) = ¢g). Then by the above theorem, there exists some unitary U

in Alice’s Hilbert space such that U ® Ip |1j)§%> = |1/)£‘%>, which is not binding at all. Therefore,
exact bit commitment is impossible.

2In this class we use the convention that a single Greek letter 1 := |¢) (3| for a pure state |¢), and ¥5 means we
take the partial trace over the complement of subsystem B.
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