
8.372 Quantum Information Science III Fall 2024

Lecture 1: September 5, 2024

Scribe: David D. Dai Bit commitment and purifications

1.1 Class Introduction

Topics

1. Quantum information theory and its mathematical foundations

2. Basic tools: norms, randomness, quantum entropies, and symmetry (group representations)

3. Applications: cryptography, many-body physics, optimization, and complexity / algorithms

Websites

1. Canvas: shell linking to everything else, email announcements

2. Piazza: discussion, questions (threaded conversations)

3. Gradescope: submit homework

4. Gitlab: lecture notes, homework problems

5. Overleaf: scribing

1.2 Information-Theoretically Secure Quantum Cryptography

Information-theoretically secure cryptography is secure against an adversary with infinite compu-
tational resources and time. This is stronger than security based on computational assumptions,
such as RSA, which is based on the hardness of factoring. Some primitives that we might want to
perform are:

1. Quantum key distribution: Alice and Bob want to share a secure random key and prevent
eavesdropper Eve from learning the key. The goal is for Alice and Bob to finish the protocol
with an identical key that Eve knows nothing about, or to abort.

2. Coin flipping: Alice and Bob are remote and need to simulate a fair coin flip. Letting the
probability that the coin is 1 be p, there are two cases:

• Strong: p ∈
[
1
2 − ϵ, 12 + ϵ

]
for some small ϵ no matter what. Alice and Bob cannot bias

the coin in either direction.

• Weak: Alice can bias p ∈
[
1
2 − ϵ, 1

]
and Bob can bias p ∈

[
0, 12 + ϵ

]
. This is useful if

Alice prefers 0 and Bob prefers 1. For example, most people prefer to serve first in a
sports match.

3. Oblivious transfer: Alice has a database (x0, x1, x2, . . .), and Bob wants to access a specific
value xi. Bob doesn’t want to reveal i to Alice, and Alice doesn’t want to reveal the other
values in the database to Bob.
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4. Bit commitment: Alice writes a message, seals it in an envelope, and hands it to Bob (com-
mit phase). Bob cannot read the message by himself (hiding property). Later, Alice can
send instructions to Bob to reveal her earlier message (reveal phase). However, she cannot
change the message after having committed it earlier (binding property). After the protocol
concludes, Bob either learns the message (valid property) if nobody cheated, or he rejects.

Aside from quantum key distribution, all of these primitives have a similar trust model in which
both parties are potentially honest or potentially adversarial. This situation is known as “two-party
cryptography”. Not all of these primitives are independent: oblivious transfer > bit commitment
> strong coin flip > weak coin flip. Only weak coin flip and quantum key distribution are possible.

1.3 State Purification

The set of density matrices for a d-dimensional quantum system is:

Dd = {ρ ∈ Cd×d : ρ ≥ 0,Tr ρ = 1}, (1.1)

where ρ ≥ 0 means that ρ is positive semidefinite. Density matrices can be interpreted as a random
ensemble of pure states, or as the marginal resulting from looking only at a small subsystem of a
larger global pure state. In the marginal case, ρA = TrB(|ψAB⟩⟨ψAB|), where |ψAB⟩ is the global
pure state, ρA is the density matrix for subsystem A, and TrB is the partial trace over the rest of
the composite system.

We are interested in the inverse problem: given some fixed ρA, what is the set of all |ψAB⟩
for which ρA is the reduced density matrix for subsystem A? Let dA (dB) be the dimension of
subsystem A (B). Then the global pure states are:

|ψAB⟩ =
∑
ij

Cij |i⟩ ⊗ |j⟩ ,
∑
ij

|Cij |2 = 1. (1.2)

The corresponding density matrix for subsystem A is:

ρA = TrB(|ψAB⟩⟨ψAB|)

=
∑
k

I ⊗ ⟨k|
∑
ij

Cij |i⟩ ⊗ |j⟩
∑
i′j′

Ci′j′ ⟨i′| ⊗ ⟨j′| I ⊗ |k⟩

=
∑
ii′

[
CC†

]
ii′

∣∣i〉〈i′∣∣ .
= CC†

(1.3)

For all C, we can perform an SVD:

C = UDV † → ρA = CC† = UD2U †. (1.4)

Except for the requirement that it be an isometry, V is unconstrained. D2 is fixed because it
corresponds to ρA’s eigenvectors. U is also fixed up to rotations within eigenspaces, i.e. U → UR
for unitary R such that RD = DR. Because R can be commuted through D as (UR)DV † =
UDRV † = UD(V R†)†, the freedom in U can be folded into the freedom in V .
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Therefore, the set of all purifications of ρA is:

ρA = UD2U † (Eigendecomposition)

{ψAB = UDV † : V †V = I}.
(1.5)

The dimensions are:
dimU = dA × r,

dimD = r× r,

dimV = dB × r,

(1.6)

where r is the number of nonzero eigenvalues of ρA. For some V1 with dimV1 = dB1 × r and V2
with dimV2 = dB2 ×r, we can always find either an isometryW such that V2 =WV1 or V1 =WV2.
To prove this, take dB2 ≥ dB1 WLOG. We can always complete the basis using Gram-Schmidt
to create a dB1 × dB1 unitary Ṽ1 which has V1 as its first r columns. Additionally, use Gram-
Schmidt to create dB2 × dB1 isometry Ṽ2 that agrees with V2 in its first r columns. Then the

isometry between V1 and V2 is W = Ṽ2Ṽ
†
1 . W clearly maps V1 to V2, and it is an isometry because

W †W = (Ṽ2Ṽ
†
1 )

†(Ṽ2Ṽ
†
1 ) = Ṽ1Ṽ

†
2 Ṽ2Ṽ

†
1 = I.

We can also see that an isometry performed on subsystem B does not change ρA. In gen-
eral, we have:

U ⊗ V |ψAB⟩ =
∑
ij

Cij U |i⟩ ⊗ V |j⟩ ,

=
∑
ii′jj′

Ui′iCijVj′j |i′⟩ ⊗ |j′⟩ ,

=
∑
ij

[
UCV T

]
ij
|i⟩ ⊗ |j⟩ .

(1.7)

Since
(
CV T

) (
CV T

)†
= C

(
V †V

)∗
C† = CC†, I ⊗ V |ψAB⟩ and |ψAB⟩ are purifications of the same

ρA.

Putting the two directions together, we have the theorem: |ψAB⟩ and |γAB′⟩ purify the same
density matrix ρA if and only if there exists some isometryW on the auxiliary spaces B and B′ such
that IA ⊗W |ψAB⟩ = |γAB′⟩ or IA ⊗W |γAB′⟩ = |ψAB⟩. The backward direction is very intuitive.
Imagine that subsystem A is held by Alice on Earth, and subsystem B is held by Bob on Mars. By
causality, an action that Bob takes alone is undetectable by Alice, i.e. cannot affect Alice’s density
matrix.

1.4 Proof that (Perfect) Bit Commitment is Impossible

There are three pictures of quantum operations: trace-preserving completely positive maps, Kraus
operators, and isometries followed by partial traces. All are equivalent, and we use “isometry
followed by partial trace” here for convenience. We can actually ignore the partial trace: there
is no difference between irreversibly throwing away the environment and merely not looking at it
again. Ignoring the partial trace also allows for the possibility that a dishonest player may keep
the environment and analyze it to gain an advantage instead of discarding it as instructed.
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Then after the commit phase, Alice and Bob share the global pure state |ψ(b)
AB⟩ for commit-

ted bit b. By the hiding property, ρ
(0)
B = ρ

(1)
B . Then by the above theorem, there exists some

unitary U in Alice’s Hilbert space such that U ⊗ IB |ψ(0)
AB⟩ = |ψ(1)

AB⟩, which violates the binding
property. Therefore, exact bit commitment is impossible.
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