8.372 Quantum Information Science III

Fall 2024

Lecture 10: October 8, 2024

Scribe: Jin Ming Koh

State learning and tomography

10.1 Recap & Introduction

The **random-access-code** (RAC) no-go theorem from last lecture says that any mechanism storing m bits of information in n qubits, conceptualized as a quantum map $\{0, 1\}^m \to n$ qubits, that allows the retrieval of any bit with probability $\geq 1 - \epsilon$ must satisfy $n \geq m [1 - H(\epsilon)]$.

From a resource perspective, we can write $\mathcal{N} \geq C(\mathcal{N})$ for a channel \mathcal{N} with capacity $C(\mathcal{N})$. This means that each use of the channel sends $C(\mathcal{N})$ bits of classical information (cbits). Intuitively, the \geq sign here signifies "power" in the resource sense—the left-hand side can be used to achieve all the same things as the right-hand side can.

The **reverse Shannon theorem** says that $C(\mathcal{N}) + [\text{some rbits}] \geq \mathcal{N}$, where rbits are shared pairs of random bits. The \geq sign tells us we can simulate the channel \mathcal{N} with the resources on the left-hand side. For example, $[1 - H(\epsilon)] \text{ cbits} + [\text{some rbits}] \geq \mathsf{BSC}_{\epsilon}$, where BSC_{ϵ} is the binary symmetric channel with error probability ϵ .

There is a hierarchy of resource inequalities. An rbit is the weakest. Sharing a maximally entangled pair (ebit), and transmission of a cbit, are stronger than an rbit. The transmission of a qubit is the strongest.

10.2 Quantum State Learning

Definition 10.2.1 (Quantum state learning task). We are given an unknown state ρ on n qubits, and an unknown distribution D of 2-outcome measurements $\{M, I - M\}$. We want to learn ρ , that is, to be able to predict the outcomes of measurements in D.

Theorem 10.2.1 (Quantum state learning sample complexity). The quantum state learning task can be accomplished with $\mathcal{O}(1/\epsilon^2)$ samples, for an acceptable error tolerance ϵ .

To be clear, in the quantum state learning task, we are given the data

$$(M_1, O_1 \sim \operatorname{tr}[M_1\rho]), \qquad (M_2, O_2 \sim \operatorname{tr}[M_2\rho]), \qquad \dots$$
 (10.1)

to learn from. We can think of ρ as a map $M \to [0,1]$, where M is a measurement operator.

10.2.1 Proof of sample complexity

To simplify our analysis, we shall assume that the measurement expectation values $\operatorname{tr}[M\rho] \approx 0$ or $\operatorname{tr}[M\rho] \approx 1$. More precisely, either $\operatorname{tr}[M\rho] \leq \epsilon$ or $\operatorname{tr}[M\rho] \geq 1 - \epsilon$.

Definition 10.2.2 (VC dimension). The VC dimension of a set of states S is the largest set of measurements that is shattered by S

Definition 10.2.3 (Shattering). We say that M_1, \ldots, M_d is shattered if for all $O_1, \ldots, O_d \in \{0, 1\}$ there exists ρ such that $\operatorname{tr}[\rho M_j] \approx O_j$ for all $j \in [d]$.

Example 10.2.1. We ask given measurement operators $0 \le M_1, \ldots, M_d \le I$, for all $O_1, \ldots, O_d \in \{0, 1\}$, does there exist a ρ such that $\operatorname{tr}[\rho M_j] \approx O_j$ for all $j \in [d]$. The answer is in the positive for

$$M_1 = \frac{I + Z_1}{2}, \qquad M_2 = \frac{I + Z_2}{2}, \qquad \dots$$
 (10.2)

That is, this example of M_1, \ldots, M_d is shattered.

Remark 10.2.1. Observe that if M_1, \ldots, M_d is shattered then it defines a RAC. We consider the map $\{0,1\}^d \rightarrow \rho$, and we can concord a ρ that returns the bitstring to be accessed upon measurement. This tells us

$$d \le \frac{n}{1 - H(\epsilon)}.\tag{10.3}$$

This implies that ρ can be learnt with $\mathcal{O}(n/\epsilon^{o(1)})$ samples. To formally show this, one can use a theorem that says a concept class can be learnt with $\mathcal{O}(\text{VC}$ dimension of class) samples.

10.3 State Tomography

Definition 10.3.1 (State tomography task). Let ρ be a $d \times d$ density matrix. Given $\rho^{\otimes n}$, we want to output a description of $\hat{\rho}$ such that

$$\frac{1}{2} \|\rho - \hat{\rho}\|_1 \le \epsilon, \tag{10.4}$$

for an acceptable error tolerance ϵ .

Remark 10.3.1. The trace distance used in the quality criteria of state tomography means that we want $\hat{\rho}$ to be accurate across all measurements. This is stringent and is essentially a worst-case assurance. In comparison, quantum state learning concerns average-case error over the distribution of measurements D.

Example 10.3.1. In the d = 2 case,

$$\rho = \frac{I + \sum_{j=1}^{3} \alpha_j \sigma_j}{2},\tag{10.5}$$

where coefficients $\alpha_i = tr[\rho\sigma_i]$. So we measure each σ_i n/3 times, to get estimates

$$\hat{\alpha}_j = \alpha_j + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right). \tag{10.6}$$

Then

$$\rho - \hat{\rho} = \sum_{j=1}^{3} \left(\alpha_j - \hat{\alpha}_j \right) \frac{\sigma_j}{2} \Longrightarrow \left\| \rho - \hat{\rho} \right\|_1 \sim \frac{1}{\sqrt{n}}.$$
(10.7)

Therefore we need number of samples $n \sim 1/\epsilon^2$ to get within error tolerance ϵ .

Theorem 10.3.1 (State tomography sample complexity). The state tomography task can be accomplished with $\mathcal{O}(d^2/\epsilon^2)$ samples.

Remark 10.3.2. In d dimensions, a density matrix has $d^2 - 1$ real degrees of freedom, which matches the d^2 in the sample complexity. Note that this is much worse than quantum state learning, which had sample complexity going as $\mathcal{O}(\log d)$.

Theorem 10.3.2 (State tomography single-copy sample complexity). The state tomography task can be accomplished with $\mathcal{O}(d^3/\epsilon^2)$ samples using single-copy measurements only.

10.3.1 Proof of sample complexity

Today we show $n \gtrsim d^2/\epsilon^2$. The idea is to construct ρ_1, \ldots, ρ_M satisfying the following properties:

1. Well-separated.

$$\frac{1}{2} \|\rho_x - \rho_y\|_1 \ge \frac{\epsilon}{10} \quad \forall \quad x \neq y.$$
(10.8)

2. High entropy.

$$S(\rho_x) \ge \log d - \mathcal{O}(\epsilon^2).$$
 (10.9)

3. Many states.

$$M = \exp(cd^2),\tag{10.10}$$

where c > 0 is a constant.

Remark 10.3.3. Can we really obtain $M = \exp(cd^2)$ many states? The volume of an ϵ -ball in d dimensions goes as ϵ^{d-1} , so maybe we can.

The implication of ρ_1, \ldots, ρ_M is that, if we can perform state tomography on them with accuracy $\epsilon/20$ and failure probability $< \delta$, then we can distinguish the different $\rho_x^{\otimes n}$. We can take the description $\hat{\rho}$ to be the *x* labels, and this satisfies the quality criteria of the state tomography task.

We should imagine the pipeline

$$x \in [M] \longrightarrow \rho_x^{\otimes n} \longrightarrow \hat{\rho} \longrightarrow x. \tag{10.11}$$

We start by writing

$$I(X; \hat{X}) \ge (1 - \delta) \log M - 1 \ge cd^2,$$
 (10.12)

where the second inequality is due to Fano's inequality. Also, supposing that $\hat{\rho}^{\otimes n}$ lives on $Q^n = Q_1 Q_2 \dots Q_n$, we can write

$$I(X; \hat{X}) \le I(X; Q^n) \le nI(X; Q_1).$$
 (10.13)

But

$$I(X;Q_1) = \underbrace{S\left(\frac{1}{M}\sum_{x}\rho_x\right)}_{\leq \log d} - \frac{1}{M}\sum_{x}S(\rho_x) \leq \mathcal{O}(\epsilon^2).$$
(10.14)

Putting the inequalities together, we conclude $n \gtrsim d^2/\epsilon^2$ as desired.

Remark 10.3.4. What about the high entropy condition? Can that really be satisfied? Yes it can, by a short argument below.

Lemma 10.3.1. There exists $d \times d$ unitaries U_1, \ldots, U_M where $M = \exp(cd^2)$, and a fixed projector Π with rank d/2, such that for all $x \neq y$,

$$\left\| U_x \frac{\Pi}{d/2} U_x^{\dagger} - U_y \frac{\Pi}{d/2} U_y^{\dagger} \right\|_1 \ge \frac{1}{10}.$$
 (10.15)

Proof. Simply choose the U_1, \ldots, U_M randomly.

Then, using this lemma, we choose

$$\rho_x = (1 - \epsilon) \frac{I}{d} + \epsilon U_x \frac{\Pi}{d/2} U_x^{\dagger}.$$
(10.16)

The eigenvalues of ρ_x are then $(1 \pm \epsilon)/d$, and $S(\rho_x) = \log d - \mathcal{O}(\epsilon^2)$ as desired.