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Lecture 10: October 8, 2024

Scribe: Jin Ming Koh State learning and tomography

10.1 Recap & Introduction

The random-access-code (RAC) no-go theorem from last lecture says that any mechanism storing
m bits of information in n qubits, conceptualized as a quantum map {0, 1}m → n qubits, that allows
the retrieval of any bit with probability ≥ 1− ϵ must satisfy n ≥ m [1−H(ϵ)].

From a resource perspective, we can write N ≥ C(N ) for a channel N with capacity C(N ).
This means that each use of the channel sends C(N ) bits of classical information (cbits). Intuitively,
the ≥ sign here signifies “power” in the resource sense—the left-hand side can be used to achieve
all the same things as the right-hand side can.

The reverse Shannon theorem says that C(N ) + [some rbits] ≥ N , where rbits are shared
pairs of random bits. The ≥ sign tells us we can simulate the channel N with the resources on
the left-hand side. For example, [1 − H(ϵ)] cbits + [some rbits] ≥ BSCϵ, where BSCϵ is the binary
symmetric channel with error probability ϵ.

There is a hierarchy of resource inequalities. An rbit is the weakest. Sharing a maximally
entangled pair (ebit), and transmission of a cbit, are stronger than an rbit. The transmission of a
qubit is the strongest.

10.2 Quantum State Learning

Definition 10.2.1 (Quantum state learning task). We are given an unknown state ρ on n qubits,
and an unknown distribution D of 2-outcome measurements {M, I−M}. We want to learn ρ, that
is, to be able to predict the outcomes of measurements in D.

Theorem 10.2.1 (Quantum state learning sample complexity). The quantum state learning task
can be accomplished with O

(
1/ϵ2

)
samples, for an acceptable error tolerance ϵ.

To be clear, in the quantum state learning task, we are given the data

(M1, O1 ∼ tr[M1ρ]), (M2, O2 ∼ tr[M2ρ]), . . . (10.1)

to learn from. We can think of ρ as a map M → [0, 1], where M is a measurement operator.

10.2.1 Proof of sample complexity

To simplify our analysis, we shall assume that the measurement expectation values tr[Mρ] ≈ 0 or
tr[Mρ] ≈ 1. More precisely, either tr[Mρ] ≤ ϵ or tr[Mρ] ≥ 1− ϵ.

Definition 10.2.2 (VC dimension). The VC dimension of a set of states S is the largest set of
measurements that is shattered by S

Definition 10.2.3 (Shattering). We say that M1, . . . ,Md is shattered if for all O1, . . . , Od ∈ {0, 1}
there exists ρ such that tr[ρMj ] ≈ Oj for all j ∈ [d].
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Example 10.2.1. We ask given measurement operators 0 ≤ M1, . . . ,Md ≤ I, for all O1, . . . , Od ∈
{0, 1}, does there exist a ρ such that tr[ρMj ] ≈ Oj for all j ∈ [d]. The answer is in the positive for

M1 =
I + Z1

2
, M2 =

I + Z2

2
, . . . . (10.2)

That is, this example of M1, . . . ,Md is shattered.

Remark 10.2.1. Observe that if M1, . . . ,Md is shattered then it defines a RAC. We consider the
map {0, 1}d → ρ, and we can concoct a ρ that returns the bitstring to be accessed upon measurement.
This tells us

d ≤ n

1−H(ϵ)
. (10.3)

This implies that ρ can be learnt with O
(
n/ϵo(1)

)
samples. To formally show this, one can use

a theorem that says a concept class can be learnt with O(VC dimension of class) samples.

10.3 State Tomography

Definition 10.3.1 (State tomography task). Let ρ be a d× d density matrix. Given ρ⊗n, we want
to output a description of ρ̂ such that

1

2
∥ρ− ρ̂∥1 ≤ ϵ, (10.4)

for an acceptable error tolerance ϵ.

Remark 10.3.1. The trace distance used in the quality criteria of state tomography means that
we want ρ̂ to be accurate across all measurements. This is stringent and is essentially a worst-case
assurance. In comparison, quantum state learning concerns average-case error over the distribution
of measurements D.

Example 10.3.1. In the d = 2 case,

ρ =
I +

∑3
j=1 αjσj

2
, (10.5)

where coefficients αj = tr[ρσj ]. So we measure each σj n/3 times, to get estimates

α̂j = αj +O
(

1√
n

)
. (10.6)

Then

ρ− ρ̂ =

3∑
j=1

(αj − α̂j)
σj
2

=⇒ ∥ρ− ρ̂∥1 ∼
1√
n
. (10.7)

Therefore we need number of samples n ∼ 1/ϵ2 to get within error tolerance ϵ.

Theorem 10.3.1 (State tomography sample complexity). The state tomography task can be ac-
complished with O

(
d2/ϵ2

)
samples.

Remark 10.3.2. In d dimensions, a density matrix has d2 − 1 real degrees of freedom, which
matches the d2 in the sample complexity. Note that this is much worse than quantum state learning,
which had sample complexity going as O(log d).

Theorem 10.3.2 (State tomography single-copy sample complexity). The state tomography task
can be accomplished with O

(
d3/ϵ2

)
samples using single-copy measurements only.
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10.3.1 Proof of sample complexity

Today we show n ≳ d2/ϵ2. The idea is to construct ρ1, . . . , ρM satisfying the following properties:

1. Well-separated.

1

2
∥ρx − ρy∥1 ≥

ϵ

10
∀ x ̸= y. (10.8)

2. High entropy.

S(ρx) ≥ log d−O
(
ϵ2
)
. (10.9)

3. Many states.

M = exp
(
cd2
)
, (10.10)

where c > 0 is a constant.

Remark 10.3.3. Can we really obtain M = exp
(
cd2
)
many states? The volume of an ϵ-ball in d

dimensions goes as ϵd−1, so maybe we can.

The implication of ρ1, . . . , ρM is that, if we can perform state tomography on them with accuracy
ϵ/20 and failure probability < δ, then we can distinguish the different ρ⊗n

x . We can take the
description ρ̂ to be the x labels, and this satisfies the quality criteria of the state tomography task.

We should imagine the pipeline

x ∈ [M ] −→ ρ⊗n
x −→ ρ̂ −→ x. (10.11)

We start by writing

I(X; X̂) ≥ (1− δ) logM − 1 ≥ cd2, (10.12)

where the second inequality is due to Fano’s inequality. Also, supposing that ρ̂⊗n lives on Qn =
Q1Q2 . . . Qn, we can write

I(X; X̂) ≤ I(X;Qn) ≤ nI(X;Q1). (10.13)

But

I(X;Q1) = S

(
1

M

∑
x

ρx

)
︸ ︷︷ ︸

≤log d

− 1

M

∑
x

S(ρx) ≤ O
(
ϵ2
)
. (10.14)

Putting the inequalities together, we conclude n ≳ d2/ϵ2 as desired.

Remark 10.3.4. What about the high entropy condition? Can that really be satisfied? Yes it can,
by a short argument below.

Lemma 10.3.1. There exists d×d unitaries U1, . . . , UM where M = exp
(
cd2
)
, and a fixed projector

Π with rank d/2, such that for all x ̸= y,∥∥∥∥Ux
Π

d/2
U †
x − Uy

Π

d/2
U †
y

∥∥∥∥
1

≥ 1

10
. (10.15)

Proof. Simply choose the U1, . . . , UM randomly.

Then, using this lemma, we choose

ρx = (1− ϵ)
I

d
+ ϵUx

Π

d/2
U †
x. (10.16)

The eigenvalues of ρx are then (1± ϵ)/d, and S(ρx) = log d−O
(
ϵ2
)
as desired.
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