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Lecture 11: October 10, 2024

Scribe: Louis Marquis Quantum Sensing and Fisher Information

11.1 Quantum Sensing

We have previously applied Holevo Information and relative entropy to classical information theory
problems like hypothesis testing, channel encoding, and state tomography. We will now apply it to
quantum sensing, which is a variant of state tomography.

Suppose that we have a magnetic field with unknown magnitude B and an electron (comprising
a qubit), which results in the following Hamiltonian.

H =
B

2
Z (11.1)

If there are N such particles, the total Hamiltonian is the sum of the individuals.

H =
N∑
i=1

B

2
Zi (11.2)

The goal is to estimate B as precisely as possible. We wish to determine the a informationally-
theoretic limit on such a precision.
A first attempt on the one-qubit scenario may involve evolving the state |+⟩ with the Hamiltonian
H, then measuring in the {|+⟩ , |−⟩} basis after time t. Denote ϕ = Bt.

e−iHt |+⟩ = 1√
2
(e−

iϕ
2 |0⟩+ e

iϕ
2 |1⟩) (11.3)

| ⟨+| e−iHt |+⟩ |2 = | ⟨+| 1√
2
(e−

iϕ
2 |0⟩+ e

iϕ
2 |1⟩)|2 = cos2

ϕ

2
(11.4)

Let random variable X represent the sign of the measured state. That is, X = 1 if |+⟩ is measured,
and X = −1 if |−⟩ is measured. Clearly, the expected value is E(X) = cos2 ϕ

2 − sin2 ϕ
2 = cosϕ. If

the experiment is repeated many (N) times, the average X should approach the expected value X̄,
allowing an estimate ϕ (and in turn B).

x̄ =

∑N
i=1Xi

N
(11.5)

ϕ = arccos x̄ (11.6)

B =
ϕ

t
(11.7)

We want to estimate the uncertainty of B. We can calculate the uncertainty ∆x, which we define
as the standard deviation of x. Then the uncertainty can be propogated over to get ∆B.

∆x = σ(X) =
√

E(X2)− E(X)2 =
√
1− cos2 ϕ = | sin(ϕ)| (11.8)
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∆x̄ = σ(

∑N
i=1Xi

N
) =

σ(X)√
N

=
| sin(ϕ)|√

N
(11.9)

∆ϕ =
∆x̄

| dx̄dϕ |
=

| sin(ϕ)|√
N

| sinϕ|
=

1√
N

(11.10)

∆B =
∆ϕ

t
=

1√
Nt

(11.11)

Particularly remarkable about this result is that neither ∆ϕ nor ∆B depend on anything besides
B and t, including anything relating to phase. This means that the experiment is equally precise
regardless of the phase of the starting state.
1√
N

is referred to as the standard quantum limit (SQL), or the shot-noise limit.

This first attempt consisted of independent measurements of N different qubits. A better precision
can be achieved by entangling the qubits first into the cat state. In practice, the cat state is more
vulnerable to noise but we can ignore this aspect for now. We evolve this state with the N qubit
Hamiltonian.

e−iHt 1√
2
(|0⟩⊗N + |1⟩⊗N ) =

1√
2
(e−

iϕN
2 |0⟩⊗N + e

iϕN
2 |1⟩⊗N ) (11.12)

We notice that the phase shift increases by a factor of N (relative to the first attempt), but this
time we only run the multi-qubit experiment once (instead of the single-qubit one N times). This
allows a quick calculation of the new precision.

∆B =
1

Nt
(11.13)

This is referred to as the Heisenberg limit, as it parallels the Heisenberg Uncertainty Principle.

11.2 Hamiltonian Learning

The problem of quantum sensing is a specific case of the more general problem of Hamiltonian
learning, in which the Hamiltonian. In theory, the maximally general Hamiltonian can have 4N

unknown parameters, but such a problem isn’t very useful nor interesting. In Hamiltonian learning,
we know the general structure of the Hamiltonian as the linear combination of a set of terms {hi}
and seek the specific parameters {bi ∈ R} of this combination.

H =
∑
i

βihi (11.14)

In this problem, one must prepare a state, evolve it with the Hamiltonian, and measure it to gain
information on {hi}.
Alternatively, one might be given the Gibbs state for a Hamiltonian e−

H
T

tr

(
e−

H
T

) and must determine

{hi} by measuring the state. This problem is also referred to as Hamiltonian learning.
However, Hamiltonian learning is a very complicated topic since there are so many strategies that
can be considered. So for the rest of this lecture, we will focus on a simpler problem called parameter
estimation from states. This problem is simple enough to have a full solution, and this solution
reveals insights on Hamiltonian learning.
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11.3 Parameter Estimation from States

In this problem, there is an unknown parameter θ that determines the distribution pθ(x) of obser-
vation x. The goal is to output an optimal estimate θ̂ after observing x. It is assumed that pθ(x)
is continuous and differentiable over θ.
A simpler version of the problem involves distinguishing pθ(x) from p0(x) for θ close to 0. In this
case, we can simply use a likelihood ratio test for hypothesis testing. Define Wn as the logarithm
of such a ratio.

Wn(x
n) = log

∏n
i=1 pθ(xi)∏n
i=1 p0(xi)

(11.15)

We have seen before a bound on the expectation of Wn for the xn ← pn0 case.

Exn←pn0
(Wn) ≤ 0 (11.16)

We can also calculate the xn ← pnθ case.

Exn←pnθ
(Wn) =

∑
xn

pnθ (x
n) log

∏n
i=1 pθ(xi)∏n
i=1 p0(xi)

(11.17)

=

n∑
i=1

∑
xn

pnθ (x
n) log

pθ(xi)

p0(xi)
(11.18)

=

n∑
i=1

∑
xi

pθ(xi) log
pθ(xi)

p0(xi)
(11.19)

= nD(pθ||p0) (11.20)

We can estimate the relative entropy D(pθ||p0) for small θ by expanding it as a power series. At
θ = 0, we know that it is zero and symmetric, so the constant and linear terms must be zero.
Therefore, the first potentially nonzero term is the quadratic term, which we denote F .

E(Wn) = nD(pθ||p0) = n(0 ∗ 1 + 0 ∗ θ + F ∗ θ
2

2
+O(θ3)) =

nFθ2

2
+O(θ3) (11.21)

We can restate this a direct formula for F , which we call the Fisher information.

F = ∂2
θD(pθ||p0)|θ=0 (11.22)

The Fisher information has several equivalent forms, which are useful but will not be derived in
this lecture.

F =
∑
x

pθ(x)(∂θ log pθ(x))
2|θ=0 (11.23)

=
∑
x

(∂θpθ(x))
2

pθ
|θ=0 (11.24)

We now show that the Fisher information indicates whether pn0 and pnθ can be reliably distinguished.
We define this condition as the expectation ofWn under pnθ being greater than its standard deviation
under either pnθ or pn0 . Such a condition can be found by calculating the variance with a factor of
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1
n for convenience.

1

n
σ2
xn←pnθ

(Wn) =
∑
x

pθ(x)(log
pθ(x)

p0(x)
)2 −D(pθ, p0)

2 (11.25)

=
∑
x

pθ(x)(θ∂θ log pθ +O(θ2))2 −O(θ4) (11.26)

= θ2
∑
x

pθ(x)(∂θ log pθ)
2 +O(θ3) (11.27)

= Fθ2 +O(θ3) (11.28)

To reliably distinguish the two distributions, the expectation must greater than the standard devi-
ation. We ignore O(θ3) elements.

nFθ2

2
= E(Wn) ≥

√
σ2(Wn) =

√
nFθ2 =⇒ θ ≥ 1√

nF
(11.29)

This is the minimum θ at which one can reliably distinguish pθ, p0.

11.4 Cramer-Rao Bound

We have found the minimum θ whose distribution can be reliably distinguished from that of 0.
This quantity also happends to also be the Cramer-Rao Bound.

Theorem 11.4.1. Define an estimator θ̂(xn) as locally unbiased if the expectation of the estimate
θ̂ is approximately θ when θ is close to θ0. θ0 will almost always be set to 0 in practice.

Exn←pnθ
(θ̂) = θ +O((θ − θ0)

2) (11.30)

If θ̂(xn) is locally unbiased, then σ(θ̂) ≥ 1√
nF

.

Proof. We wish to find a lower bound for the variance of θ̂. We can begin by noticing that
E(θ̂) = θ +O(θ2) and since θ is small, this term can be ignored in the variance of θ̂.

σ2(θ̂) = E(θ̂2)− E(θ̂)2 ≈ E(θ̂2) =
∑
xn

pnθ (x
n)θ̂(xn)2 (11.31)

We can then take a derivative of the locally unbiased condition.

1 = ∂θE(θ̂)|θ=0 (11.32)

= ∂θ
∑
xn

pnθ (x
n)θ̂(xn)|θ=0 (11.33)

=
∑
xn

∂θp
n
θ (x

n)|θ=0θ̂(x
n) (11.34)

= Exn←pnθ (x
n)(

∂θp
n
θ (x

n)|θ=0

pnθ (x
n)

θ̂(xn)) (11.35)

= Exn←pnθ (x
n)(∂θ log p

n
θ (x

n)|θ=0θ̂(x
n)) (11.36)

One can define an inner product a · b over functions a, b of xn and apply the Cauchy-Schwarz
Inequality over these functions.

a · b := Exn←pθ(xn)a(x
n)b(xn) (11.37)
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(a · b)2 ≤ (a · a)(b · b) (11.38)

In our current case, a(xn) = ∂θ log p
n
θ (x

n)|θ=0 and b(xn) = θ̂(xn).

12 = Exn←pnθ (x
n)(∂θ log p

n
θ (x

n)|θ=0θ̂(x
n))2 (11.39)

= Exn←pnθ (x
n)(a(x

n)b(xn))2 (11.40)

= (a · b)2 (11.41)

≤ (a · a)(b · b) (11.42)

= Exn←pnθ (x
n)a(x

n)Exn←pnθ (x
n)b(x

n) (11.43)

= Exn←pnθ (x
n)(∂θ log p

n
θ (x

n)|θ=0)
2Exn←pnθ (x

n)(θ̂(x
n))2 (11.44)

= nFσ2(θ̂) =⇒ (11.45)

σ2(θ̂) ≥ 1

nF
(11.46)

11.5 Quantum Fisher Information

We will now define the quantum version of Fisher information. In the quantum version of the
parameter estimation problem, the parameter θ determines a density matrix ρθ from which to
sample x, instead of a probability distribution. It is given that ρθ > 0 when θ is near θ0 ≈ 0.
We will also now define some new super-operators on matrices.

Multρ(X) =
1

2
(ρX +Xρ) (11.47)

Divρ = Mult−1ρ (11.48)

Lρ,θ = Divρθ(∂θρθ) (11.49)

∂θρθ = Multρθ(Lρ,θ) (11.50)

With these super-operators, we can define the quantum Fisher information.

FQ = tr
(
ρL2

)
(11.51)

Analogously to the classical Fisher information, the quantum Fisher information relates to the
second derivative of the quantum relative entropy.

FQ = ∂2
θD(ρθ||ρ0)|θ=0 (11.52)

We can also relate the quantum Fisher information to the classical Fisher information. To do this,
define a set of measurement operators {Mx}x∈X with

∑
x∈X Mx = I. We can calculate the Fisher

information of the distribution of the measurement, which is ρθ(x) = tr(ρθMx).

FM = F (ρθ(x)) (11.53)

=
∑
x∈X

tr(ρθMx)(
∂θ tr(ρθMx)

tr(ρθMx)
)2 (11.54)

=
∑
x∈X

tr(ρθMx)(
Re{tr(ρθLMx)}

tr(ρθMx)
)2 (11.55)

≤
∑
x∈X

tr(ρθMx)(
| tr(ρθLMx)|
tr(ρθMx)

)2 (11.56)
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We used the fact that ∂θρθ is essentially the Hermitian part of ρθLρ,θ, so ∂θ tr(ρθMx) = Re{tr(ρθLMx)}.
We can now use the quantum Cauchy-Schwarz Inequality on | tr(ρθLMx)|. Specifically, the inequal-
ity states that | tr(AB)| ≤

√
tr(A†A) tr(B†B).

| tr(ρθLMx)| = | tr
(√

ρθL
√
Mx

√
Mx
√
ρθ

)
| (11.57)

≤
√
tr(ρθLMxL) tr(ρθMx) (11.58)

We can finally substitute this inequality back into FM .

FM ≤
∑
x∈X

tr(ρθMx)(
| tr(ρθLMx)|
tr(ρθMx)

)2 (11.59)

≤
∑
x∈X

tr(ρθLMxL) (11.60)

= tr
(
ρθL

2
)

(11.61)

= FQ (11.62)

In summary, the quantum Fisher information of a density matrix is at least the classical Fisher
information of distribution of measurement outcomes on that density matrix. The inequality is
tight if the measurement is done in the eigenbasis of L.
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