
8.372 Quantum Information Science III Fall 2024

Lecture 13: October 22, 2024

Scribe: Louis Marquis and Ruohan Shen More on Random States

Unfortunately, there was no the audio in the recording of the lecture, so some details explained
verbally might be missed in these notes. This lecture will continue on random states where the
previous lecture began. Random states are useful to generate states with desireable properties
when the probability of not having that property is low-dimensional. Low-dimensional, in this
case, means that the probability is essentially zero. For example, non-invertibility of a matrix
is low-dimensional, as it requires the determinant to be exactly zero, while there are essentially
infinite real values it could take. This lecture covers various properties of random states, including
moments, anticoncentration, Renyi entropy, and entanglement.

13.1 Moments of Random States

As previously introduced, the the nth moment of a distribution over states is the expected value
of the density matrix of n copies of the state. A very important such distribution is the uniform
distribution over all unit-1 complex vectors (we will write this condition as |u⟩ ∈ Cd, with the
unit-1 implicit). We can calculate the nth moment of this random state.

E|u⟩∈Cd |u⟩ ⟨u|⊗n =
Π

(n,d)
sym

tr(Πsym)
(13.1)

=
1
n!

∑
Π∈Sn

PΠ(
d+n−1
n

) (13.2)

=

∑
Π∈Sn

PΠ∏n−1
i=0 d+ i

(13.3)

We used the definition of Πsym from last lecture, whose trace can be calculated via combinatorics
(the stars and bars method).

Πsym =
∑

t∈types
|Tt⟩ ⟨Tt| (13.4)

|Tt⟩ =
1√(
n
t

) ∑
xn∈Tt

|xn⟩ (13.5)

Tt = {xn : type(xn) = t} (13.6)

We can estimate E(|u⟩ ⟨u|⊗n) by sampling over the Gaussian state |g⟩ ∈ NC(0, 1
d
)d instead.

E|g⟩∈NC(0, 1
d
)d
|g⟩ ⟨g|⊗n =

Π
(n,d)
sym

dn
(13.7)

Notice that this value differs from the other moment by a normalization. Also notice that higher
n are more sensitive to fluctuations. Also, it’s useful to know that the Gaussian is the only moment
that is rotationally (unitarily) invariant.
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Remark 13.1.1. We can conclude that

i.i.d. + rotational invariance ⇔ Gaussian

We now provide a concrete proof for this statement. It is straightforward to verify that an i.i.d.
Gaussian distribution is rotationally invariant, so we will focus on proving the converse. Given an
i.i.d. distribution, it can be written as:

p(x1, . . . , xn) = f(x1) . . . f(xn) (13.8)

Rotational invariance imposes the condition that the joint probability only depends on the radial
distance, meaning:

p(x1, . . . , xn) = g

(√
x21 + · · ·+ x2n

)
(13.9)

To connect g with f , we choose x2 = · · · = xn = 0, which allow us to express g in terms of f :

g(x) = f(x)fn−1(0) (13.10)

Furthermore, we can get the functional equation for f :∑
i

ln
f(xi)

f(0)
= ln

f(
√
x21 + · · ·+ x2n)

f(0)
(13.11)

The only solution to this functional equation is the Gaussian distribution, which concludes the proof.

We can use the moment to calculate the expected value of an exponent of the overlap of a
random state with an arbitrary given vector.

E|u⟩| ⟨u|0⟩ |2k = E|u⟩| ⟨0|u⟩ ⟨u|0⟩ |k (13.12)

= tr
(
|0⟩ ⟨0|⊗k ⊗ E|u⟩(|u⟩ ⟨u|⊗k)

)
(13.13)

= E|u⟩ tr
(
|u⟩ ⟨u|⊗k

)
(13.14)

=
1(

d+k−1
k

) (13.15)

This value approximates to k!
dk

if d >> k. We can then calculate the mean and standard
deviation of | ⟨u|0⟩ |2.

E|u⟩| ⟨u|0⟩ |2 =
1

d
(13.16)

E|u⟩| ⟨u|0⟩ |4 =
2

d(d+ 1)
(13.17)

≈ 2

d2
(13.18)

σ(| ⟨u|0⟩ |2) =
√
E|u⟩| ⟨u|0⟩ |4 − (E|u⟩| ⟨u|0⟩ |2)2 (13.19)

≈ 1

d
(13.20)

Notice that the mean and standard deviation are comparable. There’s also a tail bound
Pr
(
| ⟨u|0⟩ |2 ≥ r

d

)
≈ e−r but we aren’t proving this this lecture.



Lecture 13: October 22, 2024 13-3

13.2 Representation

Denote R as a representation that maps elements in group G to unitaries that operate on the vector
space V . V G as the set of all states that are invariant under all R(g).

R : G→ U(V ) (13.21)

V G = {ψ ∈ V : R(g) |ψ⟩ = |ψ⟩ , ∀g ∈ G} (13.22)

For example, suppose G = U(d) and R(g) = g. Then V G = {0}. If instead R(g) = g⊗ g∗, then
V G = C |ϕ⟩ = Cvec(I).

Theorem 13.2.1. Define Π as the average of all R(g). We claim that this is the projector onto
V G.

Π =
1

|G|
∑
g∈G

R(g) = proj V G

Proof. We first prove that Π is a projector. Let h be an arbitrary element of G.

R(h)Π =
1

|G|
∑
g∈G

R(h)R(g) (13.23)

=
1

|G|
∑
g∈G

R(hg) (13.24)

=
1

|G|
∑
g′∈G

R(g′) (13.25)

= Π (13.26)

Π†Π =
1

|G|
∑
h∈G

R(h)†Π (13.27)

Π†Π =
1

|G|
∑
h∈G

R(h−1)Π (13.28)

Π†Π =
1

|G|
|G|Π (13.29)

Π†Π = Π (13.30)

(13.31)

Therefore, Π is a projector. We also show that it projects onto V G.
By definition, each |ψ⟩ ∈ V G is invariant under Π, since Π is a linear combination of R(g). We

also see that R(g)Π |ψ⟩ = Π |ψ⟩, so Π |ψ⟩ ∈ V G. This proves that Π projects onto V G.

13.3 Anticoncentration

Ideally, we would like to sample random norm-1 states. A first strategy that might come to mind is
simply to apply random gates to a initial state |0⟩. WLOG assume that these are two-qubit gates,
since any multi-qubit gate can be made from two-qubit gates.

|ψ⟩ = UT ...U1 |0⟩ (13.32)
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It’s clear that this fails to achieve uniform randomness with a polynomial number of gates,
as |ψ⟩ has an exponential number of degrees of freedom. However, it is possible to sample from
distributions that aren’t exactly the uniform distribution but whose moments are close to that
of the uniform. We’d like a metric of the anticoncentration (or how un-uniform it is) of such an
approximate distribution, so that we can minimize it. Entropy H(p) would work but it’s harder
to calculate with log. Instead, we define a new one. Let p(z) = | ⟨z|ψ⟩ |2 be the probability of
sampling the value z from the a state |ψ⟩.

E|ψ⟩
∑
z

p(x)2 = E|ψ⟩
∑
z

| ⟨z|ψ⟩ |4 = 2

2n + 1
(13.33)

We see that this metric is 1 if the distribution is deterministic. Otherwise, it is
∑

z
2

2n(2n+1) =
2

2n+1 , which is exponentially decreasing. We can then define a different metric that directly calcu-
lates the sum-of-squared differences of a distribution’s probabilities from the uniform.∑

z

(p(z)− 1

2n
)2 =

∑
z

p(z)2 − 1

2n
(13.34)

We can also use (13.33) to bound the average Shannon entropy of the measurement outcomes.

E|ψ⟩H(p) ≥ E|ψ⟩H2(p) (13.35)

= E|ψ⟩

[
− ln

∑
z

p(z)2

]
(13.36)

≥ − lnE|ψ⟩

[∑
z

p(z)2

]
(13.37)

≈ n− 1 (13.38)

13.4 Renyi Entropy

Besides Shannon entropy, we can define Renyi entropy to quantify our ignorance about a classical
distribution. The classical Renyi entropy is defined as:

Hα(X) =
1

1− α
log

(∑
x

p(x)α

)
(13.39)

where α ≥ 0. The classical Rényi entropy possesses several properties that are straightforward to
verify:

1. Hα(uniform distribution) = log d

2. 0 ≤ Hα ≤ log d

3. d
dαHα ≤ 0

Similarly, the quantum Renyi entropy can be defined as:

Sα(ρ) =
1

1− α
log (tr ρα) (13.40)

We are particularly interested in specific values of α:
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1. S∞(ρ) = − log λmax = − log ||ρ||∞

2. S2(ρ) = − log
(
tr ρ2

)
3. S0(ρ) = log(rank ρ)

We can see that for α < 1, the Renyi entropy is more sensitive to small eigenvalues of ρ; whereas
for α > 1, it becomes more sensitive to large eigenvalues. Here’s a concrete example to illustrate
this sensitivity. Consider the following density matrix on 106 qubits:

ρ =
1

2

(
I

2

)⊗102

⊗ (|0⟩ ⟨0|)⊗106−102 +
1

2

(
I

2

)⊗106

(13.41)

This density matrix describes a system that, with probability 1/2 , is maximally mixed over all
106 qubits, and with probability 1/2 , is only maximally mixed on the first 102 qubits while the
remaining 106− 102 qubits are in the pure state |0⟩. Approximately, this state has 210

6
eigenvalues

equal to 2−106 and 210
2
eigenvalues equal to 2−102 . Using this information, we can calculate the

Rényi entropy for different values of α :α:

Sα(ρ) ≈


106 α < 1

1 + 106+102

2 α→ 1

102 α > 1

(13.42)

The quantum Renyi entropy can be related to the von Neumann entropy by taking the limit of
α:

lim
α→1

Sα(ρ) = S(ρ) (13.43)

Unlike the von Neumann entropy, which requires computing the logarithm of the density matrix,
the Renyi entropy instead only involves calculating the moments. This makes the Renyi entropy
more tractable when dealing with random ensembles.

With these tools in hand, we are now ready to prove the statement that most pure states are
highly entangled. Consider a quantum state |ψ⟩ ∈ CdA⊗CdB . Without loss of generality, we assume
that dA ≤ dB. Our goal is to establish a lower bound on the expected von Neumann entropy of the
reduced state by relating it to the second Renyi entropy, and then to directly calculate the Renyi
entropy.

ES(A) ≥ ES2(A) = E tr
(
− logψ2

A

)
(13.44)

≥ − logE trψ2
A (13.45)

the second line comes from the convexity of the function − log.
To further calculate E trψ2

A, we need the following Lemma:

Lemma 13.4.1 (SWAP trick). Let FAB be the swap operator on system A and B, then

trFAB(XA ⊗ YB) = trXAYB (13.46)

Proof. The two operators XA and YB can be written as:

XA =
∑
ij

Xij |i⟩ ⟨j| (13.47)

YB =
∑
kl

Ykl |k⟩ ⟨l| (13.48)
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Then we have

trFAB(XA ⊗ YB) =
∑
ijkl

trFABXijYkl |ik⟩ ⟨jl| (13.49)

=
∑
ijkl

trXijYkl |ki⟩ ⟨jl| (13.50)

=
∑
ik

⟨ki|XikYki |ki⟩ (13.51)

= trXAYB (13.52)

Then we can directly calculate that

E trA ψ
2
A = E trA1A2 [FA1A2 (ψA1 ⊗ ψA2)] (13.53)

= trA1A2B1B2 FA1A2E (ψA1B1 ⊗ ψA2B2) (13.54)

= trA1A2B1B2 FA1A2

I + FA1A2FB1B2

dAdB(dAdB + 1)
(13.55)

= trA1A2

FA1A2d
2
B

dAdB(dAdB + 1)
+ trB1B2

FB1B2d
2
A

dAdB(dAdB + 1)
(13.56)

=
dA + dB
dAdB + 1

=
1

dA
+

1

dB
(13.57)

The first line applies the SWAP trick. The second line extends the reduced density matrix ψA
to trB ψAB. The third line computes the second moment of the random state. The fourth line
comes from the fact that FABFAB = I and trB1B2 IB1B2 = d2B. The last line comes from that
trA1A2 FA1A2 = dA. Now we can conclude that:

ES(A) ≥ − log

(
1

dA
+

1

dB

)
(13.58)

In the limit dB → ∞, system B behaves like a huge heat bath, and ES(A) ∼ log dA = tr IA/dA.
This shows that, in the typical case, region A is maximally entangled with system B.
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