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In this lecture, we’ll build the background for a more principled approach to these calculations.

15.0 Random Unitaries and Haar Measure

The uniform distribution over the unitary group U(d) is given by the Haar measure, denoted
µHaar. This measure is the analog of the uniform distribution for any compact group and is defined
by the following properties:

• Normalization: µHaar(U(d)) = 1.

• Invariance: For any subset S ⊆ U(d) and any U ∈ U(d), we have

µHaar(S) = µHaar(US) = µHaar(SU).

Physicist’s Perspective

This invariance implies that the measure is “uniform” in the sense that if we rotate any subset
of unitaries, its measure does not change. Thus, the Haar measure provides a probability
density that is independent of the choice of coordinates on U(d).

The Haar measure is unique: if any probability distribution on U(d) is left invariant, it must
be the Haar measure. This left and right invariance essentially characterizes it, making it a funda-
mental tool in defining randomness for unitary operations.

15.0.1 Random Unit Vectors and Gaussian Sampling

For generating random unit vectors computationally, a common approach is to sample each com-
ponent independently from a Gaussian distribution (which is rotationally invariant), and then
normalize the vector. This produces a uniformly random vector on the unit sphere.

For random unitaries, one approach involves using the Gaussian Unitary Ensemble (GUE), a
distribution over Hermitian matrices. To construct a GUE matrix:

• Diagonal entries are real, Gaussian-distributed.

• Off-diagonal entries are independent, with real and imaginary parts drawn from Gaussian
distributions.

Given a Hermitian matrix X sampled from GUE, the unitary eiX approximates a Haar-random
unitary. This method is computationally feasible though not perfect, as it involves approximately
O(d3) operations.

Practical Limitations

Sampling a truly Haar-random unitary is computationally challenging in high dimensions
due to the large number of degrees of freedom. Approximate methods such as GUE provide
feasible alternatives for many practical applications.
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15.0.2 Introduction to Unitary k-designs

A unitary k-design is a distribution over unitaries that mimics the Haar measure up to the k-th
moment. Formally, for any integer k, a distribution ν on U(d) is a k-design if the following holds:

EU∼ν

[
U⊗k,k

]
= EU∼Haar

[
U⊗k,k

]
.

This means that, up to the k-th moment, the behavior of unitaries sampled from ν is indistinguish-
able from unitaries sampled according to the Haar measure.

Definition: k-design via Tensor Powers

The notation U⊗k,k is shorthand for U⊗k ⊗ U∗⊗k, which represents k copies of U acting on
the system along with k copies of the complex conjugate of U . A distribution ν on U(d) is a
k-design if choosing U from ν gives the same distribution for U⊗k,k as choosing U from the
Haar measure.

15.0.3 Level Repulsion and Eigenvalue Distribution

One notable feature of random unitary matrices is level repulsion, where eigenvalues tend to
avoid being close to one another. The probability density of the eigenvalues {λi} includes a term
like ∏

i<j

|λi − λj |2,

which vanishes when two eigenvalues coincide. This “repulsion” is similar to the behavior of charges
repelling each other, leading to eigenvalues that spread out more evenly on the unit circle.

Visualization Exercise

Plotting the eigenvalues of a Haar-random unitary matrix on the complex unit circle reveals
this level repulsion. Comparing this distribution with randomly chosen phases eiθ illustrates
the difference: in the Haar case, the eigenvalues push each other apart, while in the random
phase case, they can cluster by chance.

This phenomenon is a well-known property in random matrix theory and also appears in GUE.
When eigenvalues are distinct, each eigenvector has more degrees of freedom. For degenerate
eigenvalues, the dimensionality of the associated subspace decreases.

15.0.4 Compactness and the Haar Measure

The Haar measure is defined for compact groups, such as U(d), where the group has a finite
total volume that can be normalized to 1. For non-compact groups, such as SL(2,R), there is no
normalized Haar measure due to infinite volume.
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Fact: Invariant Subspace Projection

For a compact group G, averaging a representation R over G with the Haar measure yields
a projection onto the invariant subspace V G:∫

G
R(g) dµHaar(g) = ProjV G .

This concept is crucial in representation theory and plays a foundational role in understanding
k-designs.

15.0.5 Classical Analogue: k-wise Independent Hash Functions

In classical computing, k-designs have an analogy in k-wise independent hash functions. A
hash function h : U → [m] is k-wise independent if, for any distinct inputs x1, . . . , xk and outputs
y1, . . . , yk ∈ [m], we have:

Pr
h∈H

(h(x1) = y1 ∧ · · · ∧ h(xk) = yk) =
1

mk
.

This implies that the hash function behaves like a truly random function when viewed through any
k inputs, although it is not completely random.

Construction

Degree-k polynomials are often used to construct k-wise independent hash functions. These
provide a computationally efficient balance between determinism and the randomness re-
quired for various applications.
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