
8.372 Quantum Information Science III Fall 2024

Lecture 17: November 5, 2024

Scribe: Svyatoslav Filatov, Ruoyi Yin Schur-Weyl duality

17.1 Representation Theory Continued

This lecture continues discussion of representation theory for unitary group and it’s relation to
random unitaries. Recall statement, claimed without proof, from the last lecture that allowed us
to show that E |ψ⟩ ⟨ψ|⊗n =

Πsym

trΠsym
:

Lemma 17.1.1.

(U⊗n, SymnCd) is an irreducible representation (irrep) of U(d)

Here SymnCd is a symmetric subspace:

SymnCd = {|ψ⟩ ∈ Cd⊗n
: Pπ |ψ⟩ = |ψ⟩ ∀n ∈ Sn}

Proof. To show that (U⊗n, SymnCd) is an irrep, we first can notice that it’s clearly a represen-
tation; and symmetric subspace, when acted on by U⊗n, stays in symmetric subspace. Claim
(U⊗n, SymnCd) is an irrep is equivalent to saying that no invariant subspace exist (W ⊂ SymnCd :
∀U, U⊗nW =W ).
If symmetric subspace was reducable and in some basis U⊗n it is block-diagonal, we could have
selected ψ from different blocks and for any U⊗n inner product would have been 0. Conversely, the
statement below is equivalent to the lemma formulation:

∀ |ψ1⟩ , |ψ2⟩ ∈ SymnCd/0 ∃U , s.t. ⟨ψ1|U⊗n |ψ2⟩ ≠ 0

One way to show this involves using E |ϕ⟩ ⟨ϕ|⊗n =
Πsym

trΠsym
. While to prove this fact we relied on

lemma 17.1.1., it can also be shown by Gaussian integration, so this isn’t a circular reasoning.
If we restrict |ψi⟩ = |ϕi⟩⊗n, the statement becomes trivial, since it’s enough to set U |ϕ2⟩ = |ϕ1⟩.
Symmetric subspace, however, is larger than tensor states and includes their superposition. For
the next step, recall that in symmetric subspace: |ψi⟩ ∝ Πsym |ψi⟩ ∝ E |ϕ⟩ ⟨ϕ|⊗n |ψi⟩ (from here
we’ll ignore normalization for simplicity). Under some k-design, it’s a superposition of finite tensor-
product states. This tells us:

∃ |ϕi⟩ , s.t. ⟨ψi| |ϕi⟩⊗n ̸= 0 i = {1, 2}

Without loss of generality, by selecting basis, take |ϕ1⟩ = |1⟩. Now consider random unitary of
form:

V =

(
1 0

0 U(d− 1)

)
⇒ V |ϕ1⟩ = |ϕ1⟩

Then V acts on |ψ1⟩ proportionally to |1⟩⊗n; and since everything else is averaged away, we can
claim:

EV V
⊗n ∝ |ϕ1⟩⊗n
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Similarly, we can choose some W , s.t.:

EWW
⊗n ∝ |ϕ2⟩⊗n

Finally, we can simply pick some U that translates |ϕ1⟩ to |ϕ2⟩. By averaging away all the con-
structed unitaries (V,W ) we get:

EU ⟨ψ1|U⊗n |ψ2⟩ ≠ 0

Since average is non-zero, there certainly exists some deterministic unitary, s.t. inner product is
non-zero. Therefore, symetric subspace is an irrep.

17.2 Physics Application

Here we’ll briefly discuss how symmetric and anti-symmetric subspaces relate to space of bosons
(represent forces) and fermions (represent matter).
Suppose you have n bosons in d bosonic modes (e.g. harmonic oscillator). Each one of them lives
in Cd space. Then n bosons can be described by SymnCd subspace. In contrast, n distinguishable
particles live in space (Cd)⊗n.
This idea is used in quantum information processing based on photons as qubits. For example,
in linear optical quantum computing with n photons amount of degrees of freedom is limited by
SymnCd.
In opposite, n fermions in d modes stay in anti-symmetric subspace:

AntinCd = {|ψ⟩ ∈ Cd⊗n
: Pπ |ψ⟩ = sgn(π) |ψ⟩ ∀n ∈ Sn}

This relates to Pauli exclusion principle - no two fermions exist in the exact same state - so that
projection of tensor state onto anti-symmetric subspace is zero.
Consider special case of n = 2:

Cd ⊗ Cd = Sym2Cd ⊕Anti2Cd

This can also be seen from the perspective of dimensions:

dim SymnCd + dim AntinCd =

(
d+ n− 1

n

)
+

(
d

n

)
=
d(d+ 1)

2
+
d(d− 1)

2
= d2

For n = 3, however, this is no longer true:

(Cd)⊗3 = Sym3Cd ⊕Anti3Cd ⊕ ’something else’

For d = 2, for instance, AntinCd = ∅, symmetric subspace has dimension 4 and corresponds to spin
3/2, therefore, the rest (’something else’) must represent part with spin 1/2. Generally, (’something
else’) part can be described by Schur-Weyl duality.

17.3 Schur-Weyl duality

Schur-Weyl Duality is a theorem that relates the irreducible representation of Schur-Weyl Duality
is a theorem that relates the irreducible representation of finite dimensional general linear group
(in this part, we focus on the unitary group) and symmetric group.
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Consider a tensor space with n particles:

Cd ⊗ Cd ⊗ ...⊗ Cd (17.1)

The two actions that can be applied on this tensor space are:

qn(U) = U⊗n, qn(U)(v1 ⊗ v2 ⊗ ...⊗ vn) = Uv1 ⊗ ...⊗ Uvn (17.2)

Pd(π) = P (d)
π , Pd(π)(v1 ⊗ v2 ⊗ ...⊗ vn) = vπ−1(1) ⊗ ...⊗ vπ−1(n) (17.3)

The two actions commute, [qn(U), Pd(π)] = 0. And, the Schur-Weyl Duality asserts that:

(Cd)⊗n ∼= ⊕
λ
Q

(d)
λ ⊗ Pλ (17.4)

where Q
(d)
λ is an irreducible representation of U(d), and Pλ is an irreducible representation of Sn.

Generally, the decomposition of (Cd)⊗n can be written as (Cd)⊗n = ⊕
λ
Q

(d)
λ ⊗ Pλ ⊗ CMλ . But

specifically for the group that we are considering, Schur-Weyl duality applies.
Here, λ runs over all partition of n with d parts. Par(n, d) = {(λ1, ..., λd) ∈ Zd, λ1 ≥ λ2 ≥ ... ≥

λd ≥ 0, λ1 + ...+ λd = n}. Each partition can be represented by a Young diagram.
For example: n = 1, λ = (1):

For n = 2, λ = (2), (1, 1)

(a) λ = (2) (b) λ = (1, 1)

Figure 17.1: Young diagrams for n = 2 case.

For n = 3, λ = (3), (2, 1), (1, 1, 1):

(a) λ = (3) (b) λ = (2, 1)

(c) λ = (1, 1, 1)

Figure 17.2: Young diagrams for n = 3 case.

Young tableau is obtained by filling in the boxes of the Young diagram with symbols taken
from some alphabet. Specifically, a tableau is called standard if the entries in each row and each
column are increasing and is called semi-standard if entries weakly increase along each row and
strictly increase down each column.
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1 2

3

(a) Standard Young Tableau (SYT)

1 1

2

(b) Semi-Standard Young Tableau (SSYT)

Figure 17.3: Comparison of Two Young Tableaux for λ = (2, 1).

The irreducible representation of Sn defines the symmetry of vectors under permutation. Basi-
cally, the vectors with labels on the same row are symmetric under permutation and anti-symmetric
under permutation for vectors with labels on the same column. Similarly, the irreducible repre-
sentation of U(d) labeled by a given Young diagram has the symmetry of the irrep of Sn with the
same Young diagram, where n is the number of boxes in the diagram. The Young diagram of an
irrep of U(d) has at most d rows. Therefore, basis for Pλ is indexed by SYT, since it correspond to

fill in n boxes with n different alphabet words following rules of SYT. Basis for Q
(d)
λ correspond to

filling in n boxes with d different alphabet words following rules of SSYT. For a Young Diagram of
a single row, the irrep is completely symmetric; for a Young diagram of a single column, the irrep
is anti-symmetric; for a Young diagram of a mixture of rows and columns, the irrep has mixed
symmetry. Therefore, for λ = (n), dim(Qλ) = dim(V nCd) =

(
n+d−1

n

)
, while for λ = (1, ..., 1) with

d ≥ n, dim(Qλ) =
(
d
n

)
.

Following the same example as above, we consider the case: λ = (2, 1), n = 3, d = 2:

1 2

3

1 3

2

Figure 17.4: dim(Pλ) = 2 (SYT).

1 1

2

1 3

2

Figure 17.5: dim(Q
(d)
λ ) = 2 (SSYT).

Quantum analogue of types: For fixed d and n ≈ ∞: dim(Par(n, d)) ∼ nd. dim(Q
(d)
λ ) ∼ nd

2
.

dim(Pλ) ∼ exp(nH(Xn)).
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