8.372 Quantum Information Science III Fall 2024

Lecture 18: November 7, 2024
Scribe: Ruoyi Yin Algorithms for Semidefinite Programming

The lecture is based on the paper arXiv: 1909.04613. The paper develops a quantum algorithm
for faster semidefinite programming problem for binary quadratic optimization.

Base Problem

Problem Statement: Quadratic optimization problems with binary constraints are formulated
as: for a (real-valued) symmetric n X n matrix A, compute:

max (z, Az) = tr(Aza™)

subject to
re{-1,1}"

where x € R™.
This task has applications for solving many important problems, such as:

e MaxCut: Largest cut in a graph.

e Community Detection: Dividing a network into sets of nodes corresponding to two com-
munities.

18.1 Relaxation Approach

The strategy used to speed up this optimization algorithm can be broken down into three phases:

e Phase I: Relax the Problem: Since the problem is NP-hard in the worst case, we relax it
to something more manageable.

e Phase II: Optimization Problem — Feasibility Problem: Convert the optimization
problem into a feasibility problem by formulating constraints.

e Phase III: Quantum-Inspired Algorithm: Develop quantum algorithm to solve the prob-
lem.

18.1.1 Phase I: Problem Relaxation and Rescaling

The set S™ consists of n x n positive semidefinite (PSD) matrices:
S"={X:zex=X,X > 0}.

SDP Relaxation:

tr(AX)st. X =0, diag(X)=1
max  tr(AX) s =0, diag(X)

Rescaling

AX), A=
nax tr(AX), A

1 1
——Ast. X =0, diag(X)=-1, tr(X)=1
n
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18.1.1.1 Remark:
(i) This is a special case of convex optimization problems:
max f(X) = tr(4AX)

X € C1 NCy, where
1
C1 = {x : diag(x) = n} affine subspace

Co={z:2 >0} convex cone

(ii) The algorithm will work for a more general class of convex optimization problem: for a
bounded, concave function f(X), and Cy, ...,C,, are closed convex sets:

max f(X) = tr(AX)
subject to:
XelCin..nCy,, tr(X)=1, X>0.
18.1.2 Phase II: Feasibility Problem
The feasibility problem involves finding X € S™ such that:
tr(AX) >\, diag(X)=1, tr(X)=1, X >0.

By wrapping this task into an outer loop where we binary search the interval to choose value of A,
we only need log(1/e) queries to get multiplicative e-approximation.

18.1.3 Phase III: Quantum-Inspired Change of Variable

e—H

tr(e—H)

X = € S, (Gibbs state)

- ensures X is PSD, trace 1.
New Problem:

A
Let A= ——, find H € S"
1Al

st tr(Apg) <A (pg € Ay)
I

diag(prr) = — (pr € Dy)

Again: We can solve this for any number of convex constraints.

18.2 The Algorithm

18.2.1 Oracle Access

Def (e-separation oracle): contains every line segment between two points in the set.
Let:

C C S™ be a closed, convex subset of quantum states,

C*={X=X"eCY :||X| <1} closed, convex subset of observables, “tests”
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accept if mi tr(P(p—Y)) <

ceept p if min max tr(P(p - Y)) < e

Oc.o(p) = Interpretation: observables from C* cannot distinguish p from elements of C
,€ -

else: output P € C* such that tr(P(p—Y))>$ VY €&

Interpretation: there’s an observable to which p looks different from all states in C.

Intuition:

P
(C* = set of planes)

If an oracle told me P, I can always improve my guess to push toward.

18.2.2 Hamiltonian Updates

Start with H = 0 (“infinite temperature”), pg = I/n.
Fort=1,..,T,

e check if pg € Ay and py € D,, by querying Oy, ., Op,

— if true, we are done

— Else: update H to penalize infeasible directions. Given the separating hyperplane P,

update H < h + %P

o H
- —
o tr(e=H)

Theorem 2.1(arXiv: 1909.04613) Hamiltonian updates find an approximately feasible point in at
most:
log(n)

T = [64
[64—>5

1+1
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iterations, otherwise the problem is declared infeasible.
Proof Ideas:
The relative entropy between pg = I/n and any feasible point p* is bounded:

S(p = |lpo) < log(n) (18.1)

We want to show that each iteration makes constant progress in relative entropy: (let px =

feasible point).
2

€
64

Convergence occurs after at most 7" steps or S(p*||p-) < 0, which is impossible by the definition
of relative entropy.

S(p*llpe+1) = S(p=lpe) < = (18.2)

Proof Procedures:

Suppose there exists a feasible point p*. Let

pr = m. (18.3)
Distance at time ¢t = 0:
S(p*llpo) = Tr(p"(log p* — log po)) < log(n). (18.4)
Improvement at every step:
S(p"llpe) = S(p™ | pe41) = Tr(p* (log pr — log pe11)).- (18.5)

Expanding:

Tr(p*(log pr—log pry1)) = Tr (p* (—H; — log Tr(exp(—Hy)) + Hip + log Tr(exp(—Hy1)))) - (18.6)

Simplify:
= ol (s — 1)+ 1og (it Bt (18.7)
Recall update step:
Hy = Hy + %Pt. (18.8)
Substituting:
- % Tr(p* P;) — log (Tr (?22;5”;1:11)6;3’5))) (18.9)

This term (the second part) is labeled as the "bad boi”, which we will work out in detail:

log (Tr (exp(=Hip + 1663))) . (18.10)

Tr(exp(—Hi+1))
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Useful Facts to Analyze ”Bad Boi”

1. Peierls-Bogoliubov inequality:
log(Tr(exp(F + G))) = Tr(F exp(G)). (18.11)

2. Trace scaling with scalar:

Tr <GXP(C—H)> =Tr (exp(—H) e loch> = Tr(exp (—H — (loge)I)). (18.12)

Analyzing ”Bad Boi”
By fact (2), ”bad boi” becomes:

€
log (Tr (exp (—Ht+1 — log (Tr(exp(—H¢41))) I + 1—6Pt))) . (18.13)
By fact (1):
€
> Tr <Ept exp (= Hys1 — log (Tr(exp(—Hyi1))) 1)) . (18.14)
Simplify:
€ exp(—Hii1) €
=—Tr (P = — Tr(P, . 18.1
ST (P ) = g ™) (18.15)
Continuing from Earlier:
* * € %
S llper1) = S(p"llor) = 15 Tr (Pelp” = pr41)) (18.16)
€ €
< ETY(Pt(Pt — pr+1)) — ETF(Pt(Pt — p*)) (18.17)
€ €
< E(Hpt|’”pt_pt+1”tr_§) (18.18)
Using the fact that for Hermitian matrices Hy, Hs:
exp(Hy) exp(Hs)
— < 2(exp(||H1 — Hz||) — 1), 18.19
I~ T | < e (1 i)~ (18.19)
we have:
€
lov = sl < 2o (5 121) - 1) (18.20)
Since || P;|| < 1, this simplifies to:
€
lloe = peally < 7 (18.21)
Substituting back:
S o) = Sl < = (S—£) = =S (15.22)
P llPt+1 Pptf164 5) = e .
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