
8.372 Quantum Information Science III Fall 2024

Lecture 18: November 7, 2024

Scribe: Ruoyi Yin Algorithms for Semidefinite Programming

The lecture is based on the paper arXiv: 1909.04613. The paper develops a quantum algorithm
for faster semidefinite programming problem for binary quadratic optimization.

Base Problem

Problem Statement: Quadratic optimization problems with binary constraints are formulated
as: for a (real-valued) symmetric n× n matrix A, compute:

max ⟨x,Ax⟩ = tr(Axx∗)

subject to
x ∈ {−1, 1}n

where x ∈ Rn.
This task has applications for solving many important problems, such as:

• MaxCut: Largest cut in a graph.

• Community Detection: Dividing a network into sets of nodes corresponding to two com-
munities.

18.1 Relaxation Approach

The strategy used to speed up this optimization algorithm can be broken down into three phases:

• Phase I: Relax the Problem: Since the problem is NP-hard in the worst case, we relax it
to something more manageable.

• Phase II: Optimization Problem → Feasibility Problem: Convert the optimization
problem into a feasibility problem by formulating constraints.

• Phase III: Quantum-Inspired Algorithm: Develop quantum algorithm to solve the prob-
lem.

18.1.1 Phase I: Problem Relaxation and Rescaling

The set Sn consists of n× n positive semidefinite (PSD) matrices:

Sn = {X : xx∗ = X,X ⪰ 0}.

SDP Relaxation:
max
X∈Sn

tr(AX) s.t. X ⪰ 0, diag(X) = 1⃗

Rescaling

max
X∈Sn

tr(ÃX), Ã =
1

||A||
A s.t. X ⪰ 0, diag(X) =

1

n
1⃗, tr(X) = 1

18-1

Lecture 18: November 7, 2024 18-2

18.1.1.1 Remark:

(i) This is a special case of convex optimization problems:

max f(X) = tr(ÃX)

X ∈ C1 ∩ C2, where

C1 =
{
x : diag(x) =

1

n

}
affine subspace

C2 = {x : x ⪰ 0} convex cone

(ii) The algorithm will work for a more general class of convex optimization problem: for a
bounded, concave function f(X), and C1, ..., Cn are closed convex sets:

max f(X) = tr(ÃX)

subject to:
X ∈ C1 ∩ ... ∩ Cn, tr(X) = 1, X ≥ 0.

18.1.2 Phase II: Feasibility Problem

The feasibility problem involves finding X ∈ Sn such that:

tr(ÃX) ≥ λ, diag(X) = 1, tr(X) = 1, X ⪰ 0.

By wrapping this task into an outer loop where we binary search the interval to choose value of λ,
we only need log(1/ϵ) queries to get multiplicative ϵ-approximation.

18.1.3 Phase III: Quantum-Inspired Change of Variable

X =
e−H

tr(e−H)
∈ Sn (Gibbs state)

- ensures X is PSD, trace 1.
New Problem:

Let Ã =
A

∥A∥
, find H ∈ Sn

s.t. tr(ÃρH) ≤ λ (ρH ∈ Aλ)

diag(ρH) =
I

n
(ρH ∈ Dn)

Again: We can solve this for any number of convex constraints.

18.2 The Algorithm

18.2.1 Oracle Access

Def (ϵ-separation oracle): contains every line segment between two points in the set.
Let:

C ⊂ Sn be a closed, convex subset of quantum states,

C∗ = {X = X† ∈ Cn×n : ∥X∥ ≤ 1} closed, convex subset of observables, “tests”

Lecture 18: November 7, 2024 18-3

OC,ϵ(ρ) =


accept ρ if min

Y ∈E
max
P∈C∗

tr(P (ρ− Y)) ≤ ϵ

Interpretation: observables from C∗ cannot distinguish ρ from elements of C
else: output P ∈ C∗ such that tr(P (ρ− Y)) ≥ ϵ

2 ∀Y ∈ E
Interpretation: there’s an observable to which ρ looks different from all states in C.

Intuition:

ρ

C

P
(C∗ = set of planes)

If an oracle told me P , I can always improve my guess to push toward.

18.2.2 Hamiltonian Updates

Start with H = 0 (“infinite temperature”), ρH = I/n.
For t = 1, ..., T ,

• check if ρH ∈ Aλ and ρH ∈ Dn by querying OAλ,ϵ, ODλ,ϵ

– if true, we are done

– Else: update H to penalize infeasible directions. Given the separating hyperplane P ,

update H ← h+
ϵ

16
P

• ρH ←
e−H

tr(e−H)
.

Theorem 2.1(arXiv: 1909.04613) Hamiltonian updates find an approximately feasible point in at
most:

T = ⌈64log(n)
ϵ2
⌉+ 1

Lecture 18: November 7, 2024 18-4

iterations, otherwise the problem is declared infeasible.
Proof Ideas:
The relative entropy between ρ0 = I/n and any feasible point ρ∗ is bounded:

S(ρ ∗ ||ρ0) ≤ log(n) (18.1)

We want to show that each iteration makes constant progress in relative entropy: (let ρ∗ =
feasible point).

S(ρ ∗ ||ρt+1)− S(ρ ∗ ||ρt) ≤ −
ϵ2

64
(18.2)

Convergence occurs after at most T steps or S(ρ∗||ρτ) < 0, which is impossible by the definition
of relative entropy.

Proof Procedures:

Suppose there exists a feasible point ρ∗. Let

ρt =
exp(−Ht)

Tr(exp(−Ht))
. (18.3)

Distance at time t = 0:

S(ρ∗∥ρ0) = Tr(ρ∗(log ρ∗ − log ρ0)) ≤ log(n). (18.4)

Improvement at every step:

S(ρ∗∥ρt)− S(ρ∗∥ρt+1) = Tr(ρ∗(log ρt − log ρt+1)). (18.5)

Expanding:

Tr(ρ∗(log ρt−log ρt+1)) = Tr (ρ∗ (−Ht − log Tr(exp(−Ht)) +Ht+1 + logTr(exp(−Ht+1)))) . (18.6)

Simplify:

= Tr(ρ∗(Ht+1 −Ht)) + log

(
Tr(exp(−Ht+1))

Tr(exp(−Ht))

)
. (18.7)

Recall update step:

Ht+1 = Ht +
ϵ

16
Pt. (18.8)

Substituting:

=
ϵ

16
Tr(ρ∗Pt)− log

(
Tr
(
exp
(
−Ht+1 +

ϵ
16Pt

))
Tr(exp(−Ht+1))

)
. (18.9)

This term (the second part) is labeled as the ”bad boi”, which we will work out in detail:

log

(
Tr
(
exp
(
−Ht+1 +

ϵ
16Pt

))
Tr(exp(−Ht+1))

)
. (18.10)

Lecture 18: November 7, 2024 18-5

Useful Facts to Analyze ”Bad Boi”

1. Peierls-Bogoliubov inequality:

log(Tr(exp(F +G))) ≥ Tr(F exp(G)). (18.11)

2. Trace scaling with scalar:

Tr

(
exp(−H)

c

)
= Tr

(
exp(−H) · e− log cI

)
= Tr (exp (−H − (log c)I)) . (18.12)

Analyzing ”Bad Boi”

By fact (2), ”bad boi” becomes:

log
(
Tr
(
exp

(
−Ht+1 − log (Tr(exp(−Ht+1))) I +

ϵ

16
Pt

)))
. (18.13)

By fact (1):

≥ Tr
(ϵ

16
Pt · exp (−Ht+1 − log (Tr(exp(−Ht+1))) I)

)
. (18.14)

Simplify:

=
ϵ

16
Tr

(
Pt ·

exp(−Ht+1)

Tr(exp(−Ht+1))

)
=

ϵ

16
Tr(Ptρt+1). (18.15)

Continuing from Earlier:

S(ρ∗∥ρt+1)− S(ρ∗∥ρt) =
ϵ

16
Tr (Pt(ρ

∗ − ρt+1)) (18.16)

≤ ϵ

16
Tr(Pt(ρt − ρt+1))−

ϵ

16
Tr(Pt(ρt − ρ∗)) (18.17)

≤ ϵ

16
(||Pt|| ||ρt − ρt+1||tr −

ϵ

2
) (18.18)

Using the fact that for Hermitian matrices H1, H2:∥∥∥∥ exp(H1)

Tr(exp(H1))
− exp(H2)

Tr(exp(H2))

∥∥∥∥
1

≤ 2(exp (∥H1 −H2∥)− 1) , (18.19)

we have:

∥ρt − ρt+1∥1 ≤ 2

(
exp

(ϵ

16
∥Pt∥

)
− 1

)
. (18.20)

Since ∥Pt∥ ≤ 1, this simplifies to:

∥ρt − ρt+1∥1 ≤
ϵ

4
. (18.21)

Substituting back:

S(ρ∗∥ρt+1)− S(ρ∗∥ρt) ≤
ϵ

16

(ϵ
4
− ϵ

2

)
= − ϵ2

64
. (18.22)

	18. Algorithms for Semidefinite Programming
	Relaxation Approach
	Phase I: Problem Relaxation and Rescaling
	Remark:

	Phase II: Feasibility Problem
	Phase III: Quantum-Inspired Change of Variable

	The Algorithm
	Oracle Access
	Hamiltonian Updates

