8.372 Quantum Information Science III Fall 2024

Lecture 18: November 7, 2024
Scribe: Ruoyi Yin Algorithms for Semidefinite Programming

The lecture is based on the paper arXiv: 1909.04613. The paper develops a quantum algorithm
for faster semidefinite programming problem for binary quadratic optimization.

Base Problem

Problem Statement: Quadratic optimization problems with binary constraints are formulated
as: for a (real-valued) symmetric n X n matrix A, compute:

max (z, Az) = tr(Aza™)

subject to
ze{-1,1}"

where z € R"™.
This task has applications for solving many important problems, such as:

e MaxCut: Largest cut in a graph.

e Community Detection: Dividing a network into sets of nodes corresponding to two com-
munities.

18.1 Relaxation Approach

The strategy used to speed up this optimization algorithm can be broken down into three phases:

Three Phases

e Phase I: Relax the Problem: Since the problem is NP-hard in the worst case, we
relax it to something more manageable.

e Phase II: Optimization Problem — Feasibility Problem: Convert the optimiza-
tion problem into a feasibility problem by formulating constraints.

e Phase III: Quantum-Inspired Algorithm: Develop quantum algorithm to solve
the problem.

18.1.1 Phase I: Problem Relaxation and Rescaling
The set S" consists of n x n positive semidefinite (PSD) matrices:

S" ={X :zzxx= X, X = 0}.

SDP Relaxation:

t X = i — 1
max tr(AX)st. X =0, diag(X)=1
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Rescaling

max tr(AX), A= Al

1 1-
——Ast. X =0, diag(X)=-1, tr(X)=1
n

18.1.1.1 Remark:

(i) This is a special case of convex optimization problems:
max f(X) = tr(AX)

X € C1 NCy, where
1

Ci = {a: : diag(z) = n} affine subspace
Co={x:2 >0} convex cone

(ii) The algorithm will work for a more general class of convex optimization problem: for a
bounded, concave function f(X), and Cy, ...,C,, are closed convex sets:

max f(X) = tr(AX)

subject to:
XeCin..nC,, tr(X)=1, X>0.

18.1.2 Phase II: Feasibility Problem
The feasibility problem involves finding X € S™ such that:

tr(AX) >\, diag(X)=1, tr(X)=1, X >0.

By wrapping this task into an outer loop where we binary search the interval to choose value of A,
we only need log(1/€) queries to get multiplicative e-approximation.

18.1.3 Phase III: Quantum-Inspired Change of Variable

e—H

X = tr(e—H)

€ S, (Gibbs state)

- ensures X is PSD, trace 1.

New Problem:

Lot A= & find H e "
| Al

st. tr(Apg) <A (pg € Ay)

<
_ I
diag(p) =

Again: We can solve this for any number of convex constraints.
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18.2 The Algorithm

18.2.1 Oracle Access

Def (e-separation oracle): contains every line segment between two points in the set.
Let:
C C S™ be a closed, convex subset of quantum states,

C*={X=X"eC™:|X|| <1} closed, convex subset of observables, “tests”

accept if min max tr(P(p—Y)) <

pt p if min max tr(P(p - Y)) < ¢

Oc.o(p) = Interpretation: observables from C* cannot distinguish p from elements of C
)€ -

else: output P € C* such that tr(P(p—-Y))>§ VY ef&

Interpretation: there’s an observable to which p looks different from all states in C.

Intuition:

P
(C* = set of planes)

If an oracle told me P, I can always improve my guess to push toward.

18.2.2 Hamiltonian Updates

Start with H = 0 (“infinite temperature”), pg = I /n.
Fort=1,..T,

e check if pg € Ay and py € D,, by querying Oy, ., Op,

— if true, we are done

— Else: update H to penalize infeasible directions. Given the separating hyperplane P,

update H < h + %P
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Theorem 2.1 (arXiv: 1909.04613):

Hamiltonian updates find an approximately feasible point in at most:

log(n
ig )1+1

T = [64

iterations, otherwise the problem is declared infeasible.

Proof Ideas:
The relative entropy between pg = I/n and any feasible point p* is bounded:

S(p*|lpo) < log(n) (18.1)

We want to show that each iteration makes constant progress in relative entropy: (let px =

feasible point).
2

S(p*llpey1) — S(p* [lpe) < ~5i

Convergence occurs after at most 7" steps or S(p*||p-) < 0, which is impossible by the definition

(18.2)

of relative entropy.

Proof Procedures:

Suppose there exists a feasible point p*. Let

.
Distance at time ¢t = 0:
S(p*llpo) = Tr(p"(log p* — log po)) < log(n). (18.4)
Improvement at every step:
S("llpe) = S(p*llpr41) = Tr(p*(log pr — log piy1)). (18.5)

Expanding:

Tr(p" (log pr—log pr11)) = Tr (p* (—Hy — log Tr(exp(—Hy)) + Hyy1 + log Tr(exp(—Hi11)))) - (18.6)

Simplify: Tr(exp(—Hor)
. r(exp(—
= TI'(,O (Ht+1 — Ht)) + log ( Tr(exp(—];—:)l) > . (187)
Recall update step:
€
Hiw=H+ —P. (18.8)

16

_ % Tr(p*P;) — log <Tr (?Tiggrfﬁf;;%m)> . (18.9)

Substituting:
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This term (the second part) is labeled as the "bad boi”, which we will work out in detail:

log <Tr (exp(—Ht+1 + fﬁPt))) '
Tr(exp(—Hiy1))
Useful Facts to Analyze ”Bad Boi”
1. Peierls-Bogoliubov inequality:
log(Tr(exp(F + G))) = Tr(F exp(G)),
2. Trace scaling with scalar:

Tv <exp(—H)

. ) =Tr (exp(—H) . e_logcf> = Tr (exp (—H — (logc)I)).

Analyzing ”Bad Boi”
By fact (2), ”bad boi” becomes:

log (Tr (eXP (_Ht+1 — log (Tr(exp(—Hy+1))) I + 1%3&))) :

By fact (1):
> Ty (%Rt cexp (—Hys1 — log (Tr(exp(—Hiz1))) 1)) .

Simplify:

€ eXp(—HH_l) €
= —Tr| P - = — Tr(P, .
16 r< ! Tr(exp(—Ht+1))> 16 (o)

Continuing from Earlier:

S(p*|pr+1) = S(p"llpe) = ~— T (P(p* — pes1))

16
€ €

< 16 Tr(Pelpe = per)) — 1 Tr(Pelpe — px))
€ €

<SP - _ e

< 1 UIBHlpe = pesller = 5)

Using the fact that for Hermitian matrices Hy, Hs:
exp(Hi) exp(Hs)

< 2(exp ([[Hy — Hal) = 1),
1

|

Tr(exp(H1)) B Tr(exp(Hz2))

we have:

€
lov =l <2 exp (S5121) - 1).

Since || P|| < 1, this simplifies to:

= o

”Pt - Pt+1”1 <

Substituting back:

€ € € €
* _ * < (2 _Z) = _—.
S(p H/)t+1) S(p Hpt) =16 <4 2)

(18.10)

(18.11)

(18.12)

(18.13)

(18.14)

(18.15)

(18.16)
(18.17)

(18.18)

(18.19)

(18.20)

(18.21)

(18.22)
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