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Lecture 19: November 12, 2024
Scribe: Mahdi Hamad Quantum State Merging

This lecture introduces the quantum state merging protocol, a foundational task in quantum
information theory that generalizes Schumacher compression to the setting where the receiver has
quantum side information. The protocol shows how communication costs can be reduced, and in
some cases made negative, by leveraging pre-existing correlations.

19.1 Warm-up: Schumacher Compression with a Reference
We begin with a variant of Schumacher compression in which a reference system R is included.
Suppose we have a pure state |ψ〉RA and we want to transfer the A part to Bob. The final state
will be |ψ〉RB, where Bob now holds the system that used to be A.

This can be visualized as a process in which only the ownership of the A system changes, while
the global state remains the same:

|ψ〉RA −→ |ψ〉RB

with the notation ψRA → B denoting that the A part of the state is now controlled by Bob.
In the standard compression setting, Alice can Schumacher-compress A into ≈ S(A) qubits.

Here, the inclusion of R ensures that entanglement with the reference is preserved.

19.2 Introducing Side Information: Toward Merging
Now consider the case where Bob already holds a quantum system B that is entangled with A.
The global state is |ψ〉RAB. The new task is for Alice to send A to Bob so that the final state is
|ψ〉RB′B, where B′ replaces A and is now part of Bob’s lab. The transformation is:

|ψ〉RAB −→ |ψ〉RB′B

This is the quantum analogue of classical compression with side information at the decoder (Slepian-
Wolf compression).

Classically, this task can be done at a rate of H(A|B). Quantumly, this motivates the notion
of quantum state merging.

19.3 Defining the Merging Task
Let |ψ〉RAB be a pure tripartite state. Alice wishes to send A to Bob, who already holds B, such
that the resulting state is |ψ〉RB′B, preserving coherence with R.

Alice applies an encoding operation EA, transmits a message (quantum or classical) to Bob,
who then performs a decoding operation DB,M . The figure below illustrates this setup.

19.4 Naive Approach and the Role of Decoupling
Alice could ignore Bob’s side information and Schumacher-compress A as usual, at cost S(A) qubits.
But this fails to exploit correlations between A and B.
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Figure 19.1: Quantum state merging protocol. Alice applies a random unitary to A, sends A1 to
Bob, and discards A2. Bob applies a decoder using B and A1.

The key insight is to use a random unitary on A that splits it into two subsystems: A→ A1A2.
Alice sends A1 to Bob and discards A2.

If the discarded subsystem A2 is nearly uncorrelated with the reference R, i.e.,

ρRA2 ≈ ρR ⊗ ρA2 ,

then the correlations between R and A have been preserved in the part sent to Bob, enabling him
to reconstruct the original state. This is the decoupling condition.

19.5 Why Decoupling Implies Merging
Suppose |ψ〉RAB is transformed by the encoding U into:

|σ〉RA1A2B
= (U ⊗ IRB) |ψ〉RAB

Let σRA2 be the marginal state. If σRA2 ≈ σR ⊗ σA2 , then by Uhlmann’s theorem, there exists an
isometry V : A1B → BB′B′′ such that:

(V ⊗ IR) |σ〉RA1A2B
≈ |ψ〉RB′B ⊗ |φ〉A2B′′

That is, Bob recovers the original state and obtains additional entanglement with Alice from A2B
′′.

In other words, if R is decoupled from A2, then R must be fully purified by the remainder of
the system, which is under Bob’s control. Thus, the global state has been reconstructed and the
merging has succeeded.

The goal now is to analyze the decoupling condition quantitatively. Let U be a random unitary
drawn from an approximate 2-design over HA, and let A→ A1A2 as before. We examine the trace
distance between σRA2 and σR ⊗ σA2 :

EU ‖σRA2 − σR ⊗ σA2‖1

This is bounded using the 2-norm via:

‖X‖21 ≤ d · ‖X‖22,

where d = dRdA2 . Define σ = (U ⊗ IRB)ψRAB(U
† ⊗ IRB), then:

‖σRA2 − σR ⊗ σA2‖22 = tr(σ2RA2
)− 2 tr(σRA2σR ⊗ σA2) + tr(σ2R) tr(σ

2
A2

)
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We evaluate each term using the replica trick. For the first term, introduce a second copy ψ′

and write:
tr(σ2RA2

) = tr
[
σRA2 ⊗ σ′R′A′

2
FA2FR

]
Here FA2 and FR are the swap operators on A2, A

′
2 and R,R′ respectively.

This reduces to:
tr
[
(U ⊗ U)(ψRA ⊗ ψR′A′)(U † ⊗ U †)(FA2 ⊗ FR)

]
and the Haar integral:

EU [U
⊗2XU †⊗2] = Πsym(X) ∈ span{I, F}

projects onto the symmetric subspace. We expand this into:

α+Π+ + α−Π−

where Π± = 1
2(I ± F ) are symmetric/antisymmetric projectors. The coefficients are:

α± =
tr(Π±FA2)

tr(Π±)
=

tr(FA2)± tr(FAFA2)

d2A ± dA

One finds:
EU tr(σ2RA2

) =
1

dA1

(
tr(ψ2

RA) + tr(ψ2
R) tr(ψ

2
A)

)
We now compute the remaining two terms:

EU tr(σRA2σR ⊗ σA2) =
1

dA1

(
tr(ψ2

R) + tr(ψ2
A) tr(ψ

2
R)

)
EU tr(σ2R) tr(σ

2
A2

) = tr(ψ2
R) ·

(
1

dA1

+
tr(ψ2

A)

dA1

)
Substituting and simplifying:

EU ‖σRA2 − σR ⊗ σA2‖1 ≤

√
dRdA2

dA1

(√
tr(ψ2

RA) +
√
tr(ψ2

R) tr(ψ
2
A)

)
This upper bound shows that the decoupling error decays as dA1 grows, provided ψRA has low

purity.
We now apply the decoupling bound to the i.i.d. setting. Let ρAB be a bipartite state and

|φ〉RAB a purification. Consider ψ = φ⊗n. To avoid unnecessarily large dimensions from unused
subspaces, we first restrict to the typical subspace.

Let ΠA, ΠR, and ΠAB be the typical projectors for the corresponding reduced density matrices
of φ. Define:

ψ̃RnAnBn =
(ΠR ⊗ΠA ⊗ΠB)ψ(ΠR ⊗ΠA ⊗ΠB)

tr(·)

Then ψ̃ is supported on a space of dimension:

dimHA = 2n(S(A)+δ)

dimHR = 2n(S(AB)+δ)

dimHRA = 2n(S(B)+δ)
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by purity and standard typicality bounds. Also:

tr(ψ2
RA) ≈ 2−nS(B)

tr(ψ2
R) ≈ 2−nS(AB)

tr(ψ2
A) ≈ 2−nS(A)

Substituting into the trace norm bound:

‖σRA2 − σR ⊗ σA2‖1 ≤
√

2n(S(AB)+S(A)+2δ)

2nR

(
2−nS(B)/2 + 2−n(S(AB)+S(A))/2

)
Combine exponents in the first term:

2n(S(AB)+S(A)−R+2δ− 1
2
S(B)) = 2

−n

(
R−S(AB)−S(A)−2δ+1

2S(B)
)

The dominant term in the parentheses is:

R− (S(AB) + S(A))

2

and since I(R : A) = S(R) + S(A)− S(RA) = S(AB) + S(A)− S(B) by purity, we conclude:

‖σRA2 − σR ⊗ σA2‖1 ≤ 2
−n

(
R−I(R:A)

2
−o(1)

)

Thus, for any ε > 0, we can achieve trace distance at most ε if we set:

R ≥ I(R : A) + 2ε′

which corresponds to sending 1
2I(R : A) qubits per copy. Since the communication cost is log dA1 ,

the required number of qubits sent by Alice is:

1

2
I(R : A)

Entanglement Yield

Let dA = dA1dA2 . Then:

log dA2 = log dA − log dA1 = nS(A)− 1

2
nI(R : A)

Now recall that:

I(A : B) = S(A)+S(B)−S(AB) and I(R : A) = S(A)+S(R)−S(RA) = S(A)+S(AB)−S(B)

Subtracting:
I(A : B) = 2S(A)− I(R : A) ⇒ log dA2 =

1

2
nI(A : B)

Thus, Bob ends up entangled with Alice via A2 and some ancilla B̃. They share 1
2I(A : B) EPR

pairs.
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Net Entanglement Cost and S(A|B)

If classical communication is free, then via teleportation, each ebit can be converted into one qubit
of communication. Hence:

Net cost = 1

2
I(R : A)− 1

2
I(A : B)

We now simplify:

I(R : A)−I(A : B) = S(R)+S(A)−S(RA)−S(A)−S(B)+S(AB) = S(R)−S(B)+S(AB)−S(RA)

Using purity:

S(R) = S(AB), S(RA) = S(B) ⇒ I(R : A)− I(A : B) = 2(S(AB)− S(B))

So the net cost is:

Net cost = 1

2
I(R : A)− 1

2
I(A : B) = S(AB)− S(B) = S(A|B)

This quantity can be negative. That is, merging can generate entanglement when S(A|B) < 0.

Summary

Quantum state merging allows Alice to send her share A of a state |ψ〉RAB to Bob while pre-
serving entanglement with a reference R. The communication cost is 1

2I(R : A) qubits, and the
entanglement yield is 1

2I(A : B) ebits. The net entanglement cost is:

S(A|B)

This operationally interprets the quantum conditional entropy as the cost of merging.


	19. Quantum State Merging
	Warm-up: Schumacher Compression with a Reference
	Introducing Side Information: Toward Merging
	Defining the Merging Task
	Naive Approach and the Role of Decoupling
	Why Decoupling Implies Merging


