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3.1 Introduction

There are parallels between classical and quantum information theory.

Application Classical information theory Quantum information theory

Data compression Shannon entropy von Neumann entropy

Channel coding Mutual information Quantum mutual information (for classi-
cal information over noisy channel); co-
herent information (for quantum informa-
tion over noisy channel).

Hypothesis testing Relative entropy Quantum relative entropy

3.2 Entropy

Entropy is a measure of uncertainty.

3.2.1 Shannon entropy

Definition 3.2.1 (Shannon entropy of single variable). For random variable X ∼ p such that
P(x) = p(x), the Shannon entropy of X is

H(X) = H(p) = −
∑
x∈X

p(x) log2 p(x). (3.1)

Some properties:

1. Bounds. The Shannon entropy satisfies 0 ≤ H(X) ≤ log2 d for d the size of the alphabet
of X. The lower bound is attained for deterministic X. The upper bound is attained for
uniformly random X.

2. Concavity. For all 0 ≤ λ ≤ 1,

λH(p1) + (1− λ)H(p2) ≤ H[λp1 + (1− λ)p2]. (3.2)

3. Norm power series expansion.

∥p∥1+ϵ =

(∑
x∈X

p(x)1+ϵ

) 1
1+ϵ

= 1 + ϵH(p) +O
(
ϵ2
)
. (3.3)
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Definition 3.2.2 (Shannon entropy of two variables). For random variables (X,Y ) ∼ p such that
P(x, y) = p(x, y), the Shannon entropy of the joint distribution

H(X,Y ) = −
∑

(x,y)∈(X,Y )

p(x, y) log2 p(x, y). (3.4)

For a product distribution, H(X,Y ) = H(X) +H(Y ).

3.2.2 Conditional entropy

Definition 3.2.3 (Conditional entropy). For random variables (X,Y ) ∼ p such that P(x, y) =
p(x, y), the conditional entropy of Y given X is

H(Y |X) = −
∑
x∈X

P(X = x)H(Y |X = x) (3.5)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x) (3.6)

= H(X,Y )−H(X), (3.7)

where we have noted p(y|x) = p(x, y)/p(x).

The physical intuition is that H(X) is the uncertainty of X, whereas H(Y |X) is the uncertainty
of Y when we know X. Therefore H(X,Y ) = H(X) +H(Y |X).

Remark 3.2.1 (Chain rule). For random variables (X1, X2, X3),

H(X1, X2, X3) = H(X1) +H(X2|X1) +H(X3|X1, X2). (3.8)

Remark 3.2.2 (Non-negativity of conditional entropy). Classically, H(Y |X) ≥ 0. But not so
quantumly. An example is an EPR pair. Then H(X,Y ) = 0 as the two subsystems jointly are in
a pure state, but H(X) = H(Y ) = 1 as the reduced density matrix of each subsystem is maximally
mixed. That is, quantumly, the joint probability distribution can possess less entropy than its
marginal distributions.

3.2.3 Mutual information

Definition 3.2.4 (Mutual information). The mutual information between random variables (X,Y )
is

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3.9)

The physical interpretation is that I(X;Y ) is how much information one learns about X when one
looks at Y , or symmetrically, how much information one learns about Y when one looks at X.

Remark 3.2.3 (Non-negativity of mutual information). Both classically and quantumly,

I(X;Y ) ≥ 0 ⇐⇒ H(X) +H(Y ) ≥ H(X,Y ) ⇐⇒ H(Y |X) ≤ H(Y ). (3.10)
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3.2.4 Entropy of density matrices

Definition 3.2.5 (Shannon entropy of density matrix). The Shannon entropy of a density matrix
ρ is

H(ρ) = −
∑
k

λk log2 λk (3.11)

where {λk}k are the eigenvalues of the matrix.

The entropy H(ρ) is the Shannon entropy of the probability distribution of measurement outcomes
obtained when ρ is measured in its eigenbasis.

Remark 3.2.4 (Strong sub-additivity). For quantum systems A, B and C,

H(A) +H(ABC) ≤ H(AB) +H(AC). (3.12)

3.3 Noiseless coding theorem

Theorem 3.3.1 (Noiseless coding theorem). It is possible to compress n length iid message x1, x2, . . . , xn,
from x X, to nH(X) + o(1) bits, with perfect recovery.

Proof. Lets consider the probability distribution X := {x, p(x)} where each letter xi has probability
p(xi). For an n-letter message,

p(x1x2...xn) =
n∏

i=1

p(xi)

due to iid. Unless X is uniformly random it is possible to compress this distribution to an smaller
string. Using the law of large numbers we know that for a string of n letters, xi typically occurs
np(xi) times. Therefore using Stirling’s approximation we can say that the number of typical strings
is

n!∏
x(np(x))!

≈ 2nH(X)

where,

H(X) = −
∑

p(x) log2 p(x)

If we use a block code that relates integers to typical sequences of the n-letter message, then the
information in the n-letter string can be conveyed in on average nH(X) bits. We need the +o(1)
in order to prove achievability.

3.4 Noisy coding theorem

Consider now that the channel over which we transmit information is noisy. We encode our input
message, pass the encoded message over the channel, and decode at the destination.

Definition 3.4.1 (Rate). Using a message of length n sent over the channel to encode a message
of length k, the rate of the transmission is R = k/n.

Definition 3.4.2 (Channel capacity). Consider a noisy channel which receives random variable X
as input and outputs random variable Y . Then the channel capacity is

C = max
X

I(X;Y ), (3.13)

where the maximization is performed over the input random variable X.
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Theorem 3.4.1 (Noisy coding theorem). Consider sending a message of length n over a noisy
channel at rate R. It is possible to do so with vanishing probability of error as n → ∞ as long as
R < C where C is the capacity of the channel. Otherwise, the probability of error approaches unity
as n → ∞.

Proof. Consider a discrete memoryless channel with input alphabet X and output alphabet Y. The
channel is characterized by a conditional probability distribution P (y|x), which gives the probability
of receiving symbol y ∈ Y when x ∈ X is sent from Alice to Bob. R and C of the code are defined
as

R =
log2M

n
,

C = max
P (x)

I(X;Y ),

where M is the number of codewords, and n is the length of each codeword. Construct a random
codebook by selecting M = 2nr codewords x1, x2, . . . , xM independently and uniformly from X n

according to the distribution P (x). Bob observes the output yn ∈ Yn and decodes the received
message to one of the M possible codewords. The goal is to show that for r < C, the probability

of error can be made arbitrarily small as n → ∞. Define the jointly typical set T
(n)
ϵ (X,Y ) as the

set of pairs (xn, yn) such that: ∣∣∣∣− 1

n
logP (xn)−H(X)

∣∣∣∣ < ϵ,∣∣∣∣− 1

n
logP (yn)−H(Y )

∣∣∣∣ < ϵ,∣∣∣∣− 1

n
logP (xn, yn)− I(X;Y )

∣∣∣∣ < ϵ.

Decoding is performed by finding the unique codeword xni such that the pair (xni , y
n) is jointly

typical.
The probability of error can be decomposed into two types: 1. No codeword xni is jointly typical

with yn. 2. There exists a codeword xnj (with j ̸= i) that is jointly typical with yn.
The probability of the first type of error vanishes as n → ∞, by the law of large numbers

and the properties of typical sets. For the second type of error, using the union bound and the
independence of codewords, we get:

P (error) ≤ P (incorrect decoding) ≤ (M − 1)P (codeword typical with yn).

Since the number of codewords M = 2nr and the probability that a randomly chosen codeword
is jointly typical with yn is approximately 2−nI(X;Y ), the probability of error is bounded by:

P (error) ≤ (M − 1)2−nI(X;Y ) ≈ 2n(R−I(X;Y )).

Thus, for R < C, the probability of error tends to zero as n → ∞. Conversely, if r > C, the
probability of error approaches 1 as n → ∞.

Therefore, reliable communication over a noisy channel is possible at any rate R < C, and the
probability of error can be made arbitrarily small. Conversely, for rates R > C, the probability of
error approaches 1.
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