8.372 Quantum Information Science III Fall 2024

Lecture 5: September 19, 2024
Scribe: John Blue and Jonathan Lu Relative entropy

5.1 Huffman codes as an interpretation of entropy

Here’s an interesting interpretation of entropy given by Shannon. Suppose X ~ p. How surprised
would you be to see that X = x7 For example, in the English language, you wouldn’t be very
surprised if X = e, but you would be pretty surprised if X = q. Define
1
surprise(z) = log ——. (5.1

() =log 1) !
The idea of this definition is that 1/p(x) gets larger as p(z) gets smaller, so that as things are less
probable we are more surprised. But why the log? This comes from an exp licit construction of an
information compression scheme known as Huffman coding. The idea is to map an outcome x into
a bitstring

x — Enc(z) s.t. |[Enc(z)| = {log p(la:)-‘ = [surprise(x)]. (5.2)
If you pretend for a moment that all the probabilities are dyadic (i.e. 27 for some k& depending
on z), then the log gives an immediate interpretation of representing a number as a bitstring. In
making the encoding, you have to be careful to ensure that it can be decodable. One straightforward
way to do this is by ensuring that the code is prefiz-free, i.e. that no codeword is the prefix of
another codeword. If this weren’t the case, we would get lost trying to decode locally. As an
example, consider the Table 5.1 below. If we instead encoded a with 1, and we have a stream of

’ T ‘ p(z) ‘ Enc(z) ‘

al| 1/2 0
b| 1/4 | 10
c | 1/8 ] 110
a|1/8 | 111

Table 5.1: Huffman coding for a dyadic distribution over 4 characters.

bits coming in that look like 111, we couldn’t distinguish aaa from d. (We could add separation
characters between each encoded bitstring, but that would increase the encoding size!)

Note that if p is a dyadic distribution, H(p) = E[|Enc(X|], giving a constructive interpretation
of entropy as the average Huffman encoding length. In general, the ceiling gives a few off-by-one
errors that makes the Huffman code slightly more annoying to deal with. We won’t get into that
here, but it doesn’t make any practical impact on the fundamental concepts we have discussed.

5.2 Relative entropy

Let’s now imagine that we are trying to follow the Huffman procedure to encode our data into bits.
The data comes from a distribution p, but we don’t know p. Instead, we guess a distribution ¢ and
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encode according to ¢ instead. How good is our Huffman code now? Define the Huffman encoding
map using g as Enc,. The new average length of the encoding is given by

Ex~p[Ency (X Z p(z (5.3)

To study this quantity, we would like to write it in terms of the actual entropy H (p) and some kind
of measure of how much ¢ deviates from p.

Definition 5.2.1. The relative entropy of q relative to p is given by D(p||lq) = >, p(x)log %.

In a very loose sense, the relative entropy D(pl||q) is meant to give a “distance” between distri-
butions p and gq. However, note that D(p||q) is not symmetric. Also, p is supported on a character
in which ¢ is not, D(pl|q) is infinite! So what can we say about it?

Theorem 5.2.1. D(p||q) > 0.

Proof. One way to prove this is by applying Shannon’s noiseless coding theorem. But we’ll do this by
a direct algebraic proof because of how important this bound is. First, note that 1+z<e*VzeR.
In particular, 2 < e* — 1. Now let 2 =Iny, so that Iny <y — 1 and thus ln > 1—y. Hence,

Figure 5.1: e* (blue) is lower bounded by 1+ z (red).

Dipll) = Y pte)tos 5 = 115 3 i) 1np‘§> (.4

Zzz:p(a:)( ?‘2) Zp =1-1=0. (5.5)

There are a number of important corollaries that follow almost immediately from this result.
Corollary 5.2.1. H(p) < logd where d is the size of the character set from which p draws.
Proof. First, define u € R to be the uniform distribution, that is u = (1/d,...,1/d). Then

0 < D(pllu) = Zp (log p(z) + log d) (5.6)

= logd — H(p) (5.7)
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This quick proof emphasizes the the asymmetry of the relative entropy is telling you something
- the mixed thing should always go second!
We give the following inequality without proof

Theorem 5.2.2 (Pinsker’s Inequality).

D(pllq) > =—llp —dll3 (5.8)

_212

Using this, we can make rigorous an intuition that H(p) being close to logd means that p is
close to uniform. Suppose H(p) > logd — 6. Then D(p||lu) < 4, which by Pinsker’s inequality
implies that ||p — ul|; < +/21n(2)J.

We'll next use relative entropy to prove things about mutual information.

Corollary 5.2.2.

0<I(X;Y)=H(X)+H(Y) - HXY) (5.9)
= H(X) - H(X|Y) (5.10
= H(Y) - HY|X) (5.

)
11)
We can interpret this as saying that a) mutual information is a correlation (non-negative) b)
conditioning reduces entropy.

Proof. Consider the relative entropy between a joint distribution pxy, and the product of it’s
marginals:

D(pxyllpx @ py) =Y pxy(z,y) (log(pxy (z,y)) — logpx () — logpy (y))  (5.12)
x7y
The first term is simply —H(XY'). Looking at the second term, Z%y pxy (z,y)logpx(z), we see
that by summing over y, we recover the marginal px (z), and so this is just equal to H(X). Similarly,
the third term is just H(Y'). Putting it all together yields

D(pxy|lpx @ py) = —H(XY) + H(X) + H(Y) (5.13)
>0 (5.14)
where the inequality follows because relative entropy is non-negative. O

As a final application, we will prove that entropy is concave.
Corollary 5.2.3.

Let {p,} be a set of probability distributions, and 7, be a a probability distribution. Then

D meH(pe) < HO | maps) (5.15)

Proof. Define p(x,y) = mpz(y). Then
H(Y|X) = H(X,Y) — H(X) (5.16)
= - Z TePe (y) log(mepe(y)) — Z 7 log(1/m;) (5.17)

= wa (pe) (5.18)
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and

HY)=H (Z prx) . (5.19)

Concavity then follows from the fact that H(Y|X) < H(Y). O

5.2.1 Hypothesis Testing

Hypothesis testing is concerned with the following question: suppose we have two distributions p
and ¢, and we get a sample x that we are told came either from p or ¢. How can we decide which?

There are two possible mistakes you could make, which are very descriptively called "type 1
error” and "type 2 error”.

e Type 1 error: You guess x ~ ¢ when actually z ~ p. We will use a to denote the probability
of a type 1 error.

e Type 2 error: You guess x ~ p when actually x ~ q. We will use 8 to denote the probability
of a type 2 error.

There are a few different kinds of hypothesis testing:

e Symmetric hypothesis testing: Come up with a test that minimizes (« 4 )/2, which has a
minimum of (|p — ¢||s.

e Bayesian hypothesis testing: Come up with a test that minimizes ma+ (1 — 7)3, which has a
minimum of ||7p — (1 — m)q||1 + f(m) for some function f (7 is prior probability that it’s p.)
e Asymmetric hypothesis testing: Minimize §, subject to the contraint that alpha < e.

We are going to study asymmetric hypothesis testing. Let S = min{f|a < €}, and I =
Bepsiton for distinguishing p™ vs ¢™ (i.e. you get n samples to distinguish p and g).

As a first observation, note that as we increase n, we should get more confident, and S, should
go decrease. One might hope that it will scale as e ™% for some R, and this indeed turns out
to be the case, with R being the relative entropy.

Theorem 5.2.3 (Chernoff-Stein). For all € € (0,1),

.o —1 n
lim —log 5 = D(pllq) (5.20)

n—oo

Instead of proving this theorem, we will look at a few examples to see the sorts of tests that
yield the desired S..

Examples
1. Suppose p = ¢q. Then < D(p||q) = 0 and S stays constant, as the distributions are
identical and there’s nothing that can distinguish them.

2. Suppose ¢ is the uniform distribution. Then D(p||q) = logd — H(p). Here is a test:
take a sample and check if z" € Tgé. If it is, guess p, otherwise, guess q. We see that
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the probability of a type one error is the probability that the sample is not in T;J, ie.
a= pn(m) which goes to zero as n goes to infinity. We can also see that

B =u"(T,5) (5.21)
s
=& (5.22)
<exp (nH(p) +nd —nlogd) (5.23)
= exp (=n(D(pl|u) - 9)) (5.24)

Since we can make § arbitrarily small, we see that our test obtains the scaling from
theorem 5.2.3.

3. Suppose D(p||lq) = oo. Then, A = supp(p) \ supp(q) # 0, i.e. the support of p is not
contained in the support of g. We can then use a simple test: if there exists an z; in the
sample such that x; € A, then guess p. Otherwise, guess ¢q. Since x; being in p guarantees
that the sample came from p, we get = 0, and o = p(supp (¢))" — 0 as n gets big.
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