8.372 Quantum Information Science III Fall 2024

Lecture 6: September 24, 2024
Scribe: John Blue Quantum Relative Entropy

6.1 Chernoff-Stein Lemma

Let’s start by proving the Chernoff-Stein Lemma from the last lecture. The setup: we have a string
2", which was sampled either from p™ or ¢", and we want to know which. To do this, we will look
at the likelihood ratio test (LRT). To perform this test, we first compute

W(z") = log — (6.1)

Note that W is a random variable, and that
o Eunpn[W] =nD(pllq)
o Eungn[W] =—nD(q|lp)

Then, to make the decision, we define some value T' such that if W > T, we guess p”, and if
W < T, we guess ¢". Let A = {a"|W(z™) > T} be the "acceptance region”.

We're interested in asymmetric hypothesis testing: we need p"(A) > 1 — € (i.e. the probability
that we guess ¢ when it was actually p should be less than ¢), and then ¢"(A) < e~ "% for some R
(the probability that we guess p when it was actually ¢ should grow exponentially small with n).

To decide where to set T', observe that if you set the threshold above nD(pl|q), then (in the
limit of large sample sizes), we will never guess p. On the other hand, if we set the threshold below
—nD(q||p), we will never guess g. This suggests we should set 7' somewhere inside this range. Since
we want to minimize ¢"(A), we’ll pick T' to be closer to this upper bound: 7' = n(D(pl||q) — 9).

We will first show that this 7" achieves the desired bound for p™(A). Consider that

p"(z")

q" (")

= Prynpn [ (pllg) —

p"(A) = Pragnpn [log > nD(p||q)} (6.2)

Zn: Wix;) < (5] (6.3)

Since E,p[W[z]] = D(p|lq), and each of the z; are independent and identically drawn from the
source, by the law of large numbers, this quantity approaches 1 as n goes to infinity. Thus, for any
e and § we can take n large enough that p"(A) > 1 —e.

Now to show that ¢"(A) is small. If 2 € A, then ¢"(z") < e~ Tp"(2™). Then,

:\*—‘

(=)

2
=
A

e Tp(A) (6.4)

<e T

so R = D(p||q) — ¢ (for any § > 0).
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6.1.1 Multiple hypothesis testing

We briefly mention another form of hypothesis testing: multiple hypothesis testing. Here, we have
Q C Ay = {prob dists on [d]}. Now, we want to distinguish between the two cases z" ~ p" or
q" for some g € Q. Intuitively, it makes sense that distinguishing p from @ should be at least as
hard as distinguishing p from ¢*, where ¢* is the distribution in @ closest to p (see figure 6.1).
It turns out that it is actually equally as hard - you can distinguish with the exponential rate

IS

Figure 6.1: An example of multiple hypothesis testing. Given a sample x”, we want to distinguish
between two cases, ™ ~ p", or " ~ ¢" where ¢ € @), a subset of the probability simplex. Here, ¢*
is the point in @) closest to p.

R = mingeq D(pllq).

6.2 Quantum Relative Entropy and Quantum Chernoff-Stein

We will now turn to the quantum analogue of hypothesis testing. First, we define the quantum
relative entropy.

Definition 1 (Quantum Relative Entropy). The quantum relative entropy, D(p||o), is defined as

D(pl|o) = Trlp(log p — log o)].

Note that if [p, o] = 0, this reduces to the classical relative entropy. Just like in the classical
case, D(p||o) > 0. From this, we get that

e S(p)=d
e I(A;B) >0
e S(A) > S(A|B)
We also have a Quantum Pinsker’s Inequality.
Theorem 1. |
D(pllo) > [l — ol

Now for asymmetric hypothesis testing. Our distributions now will be two quantum states, p
and o, and the test will be a set of measurement operators {M,I — M} where an outcome of M

means we say the state is p, and an outcome of I — M means we say the state is 0. We now want
to find
B = min {Tr [Mc®"] | TtMp®" > 1 —¢€}.

Theorem 2 (Quantum Chernoff-Stein Theorem).

s
Jim —log 5 = D(pl|o).
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Before looking at the proof, we will examine the case when p and o are pure and D(pl||o) = oo,
i.e. supp(p) € supp(o). Let p = |¢)(¢| and o = |¢)($|. The measurement that achieves the desired
rate is M = I — B®", where A = |¢)(¢*|, and B = I — A. (A result of M is saying that you
measured |¢+) at least once).
Then
Tr(Mo®") =0

while Tr(Mp®") — 1 as n — oo (in every register you get some probability of |¢1), so as n — oo
you are increasing your chances)
We will now prove the theorem.

Proof. We want an M such that Tr(p" M) > o and Tr(6" M) < e~ "R, The idea will be to construct
something similar to the LRT, but we will have to be careful about eigenbases.

Let p =32, ralow)(aq| and o = 37, so[Be)(Bel-
Recall the definition of a typical projector:

Do = > |aign ) (]

a:| L 300 log ra; +Tr(plog p)| <6

Next, define
bllos = > B ) (Ban.

x| % iy log sz, —Tr(plogo)|<d

We note that both of the subspaces defined by these projectors are typical under p, i.e.,
OTr(p"HZﬁ) >1—¢€and Tr(p®”HZHU76) > 1—e. We also have that [II7 ;, p®" = 0 and [HZHWS’ o®n| =
If we sandwich p®" between the typical projectors, we cut off the ”atypical” eigenvalues:

efn(S(p)H)Hgé < H25p®nﬂg(5 < e (5(p)-9)

n
p,0°
Similarly, if you do the conditional projection, it squishes the eigenvalues of o into the following
range:
en(Tr(plogU)f(g)HpHU < Hp||daan||U < en(T‘r(plogU)%»é)HpHG‘ (66)

(Note that from here on we will drop the § and n on the typical projectors).
To get some intuition for equation 6.6, suppose you measure logo = > log s,f; on p. Then

Pr[log s;] = Tr[pfBa],

and the expectation is Trplogo. If you do this n times, the law of large numbers says that the
average will approach the expectation.
We will first show achievability. Our measurement will be the product of both projectors - first
measure {115, I —I1s}, and if you get the positive outcome I1 then measure {II,, I —II,}.
More rigorously, define

pllo>
M = TL, T, 1L .

Then
Tr (p¥" M) = Tr (T,TLy 0 p " T 01T, )

We need to show that the probability of p accepting is large. As we saw above, the probability
of p accepting for each individual measurement is large. To show the combination works, we can
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use the Gentle Measurement lemma, which says that the state after accepting II
close to p:

pllo 18 still very

||:0®n - HpHUp®an||0'||1 < 2\/E
We then see that

1
Tr(I, (0" = p)jop™ " Ty0)) < 511p%" = Thyyjpp™ Ty o |1 < Ve

from which it follows that

Tr(IT I, p2 " TLy o 11,) > Tr(IL,p®") — Ve > 1 — € — Ve
So we have now showed that type one error is Small enough, and now we need to bound type
two error. Consider that

Tr(Mo®") = Tr (1,11, ,0%"11;,) (6.7)

<Tr (Hpen(Tr(plog o)+5)HpHJ) (6.8)

< en(8(p)+0) n(Tr(plog 7)+3) (6.9)

— ¢~ UD(pllo)—26) (6.10)

where we used the operator inequality from equation 6.6, the fact that II,, < I, and that

Te(Il,) = [T < en(50)+9),

We have now shown achievability. Next, we will use similar arguments to show the converse,
i.e., you cannot do better than the rate D(p||o).

Suppose Tr (M p®") > a. Our goal is to show that Tr (Mc®") is "not too small”. We will use
the following operator inequalities:

o®" > 11, " (TP log o) =) (6.11)
I1,p°" I, < e 5=y (6.12)

Now
Tr (Mo®™) > Tr (I, M) o"(Tr(plog o) —0) (6.13)
> (a — V/2e)e ™ Delle)~20) (6.14)

and

Tr (I, M) > Tr (L) o M1, ,11,) (6.15)
> Tr (ML p®"TL, e~ 5010} (6.16)

We can again use Gentle Measurement to show that HPHGp@”H is close to p®", and using a

similar argument as before, we get that

Tr (MIL,p"" Ty 0) > 0 — V2e.

pllo

Putting it all together, we find
Tr (Mo®") > (o — v/2e)e Pl)=0) (6.17)

which completes the proof. ]
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