8.372 Quantum Information Science III Fall 2024

Lecture 6: September 24, 2024
Scribe: John Blue Quantum Relative Entropy

6.1 Chernoff-Stein Lemma

Let’s start by proving the Chernoff-Stein Lemma from the last lecture. The setup: we have a string
2", which was sampled either from p™ or ¢", and we want to know which. To do this, we will look
at the likelihood ratio test (LRT). To perform this test, we first compute

W(z") = log — (6.1)

Note that W is a random variable, and that
o Eunpn[W] =nD(pllq)
o Eungn[W] =—nD(q|lp)

Then, to make the decision, we define some value T' such that if W > T, we guess p”, and if
W < T, we guess ¢". Let A = {a"|W(z™) > T} be the "acceptance region”.

We're interested in asymmetric hypothesis testing: we need p"(A) > 1 — € (i.e. the probability
that we guess ¢ when it was actually p should be less than ¢), and then ¢"(A) < e~ "% for some R
(the probability that we guess p when it was actually ¢ should grow exponentially small with n).

To decide where to set T', observe that if you set the threshold above nD(pl|q), then (in the
limit of large sample sizes), we will never guess p. On the other hand, if we set the threshold below
—nD(q||p), we will never guess g. This suggests we should set 7' somewhere inside this range. Since
we want to minimize ¢"(A), we’ll pick T' to be closer to this upper bound: 7' = n(D(pl||q) — 9).

We will first show that this 7" achieves the desired bound for p™(A). Consider that

p"(z")

q" (")

= Prynpn [ (pllg) —

p"(A) = Pragnpn [log > nD(p||q)} (6.2)

Zn: Wix;) < (5] (6.3)

Since E,p[W[z]] = D(p|lq), and each of the z; are independent and identically drawn from the
source, by the law of large numbers, this quantity approaches 1 as n goes to infinity. Thus, for any
e and § we can take n large enough that p"(A) > 1 —e.

Now to show that ¢"(A) is small. If 2 € A, then ¢"(z") < e~ Tp"(2™). Then,

:\*—‘

(=)

2
=
A

e Tp(A) (6.4)

<e T

so R = D(p||q) — ¢ (for any § > 0).
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6.1.1 Multiple hypothesis testing

We briefly mention another form of hypothesis testing: multiple hypothesis testing. Here, we have
Q C Ay = {prob dists on [d]}. Now, we want to distinguish between the two cases z" ~ p" or
q" for some g € Q. Intuitively, it makes sense that distinguishing p from @ should be at least as
hard as distinguishing p from ¢*, where ¢* is the distribution in @ closest to p (see figure 6.1).
It turns out that it is actually equally as hard - you can distinguish with the exponential rate

IS

Figure 6.1: An example of multiple hypothesis testing. Given a sample z", we want to distinguish
between two cases, ™ ~ p™, or 2" ~ ¢" where q € @, a subset of the probability simplex. Here, ¢*
is the point in @ closest to p.

R = mingeq D(pl|q).

6.2 Quantum Relative Entropy and Quantum Chernoff-Stein

We will now turn to the quantum analogue of hypothesis testing. First, we define the quantum
relative entropy.

Definition 6.2.1 (Quantum Relative Entropy). The quantum relative entropy, D(p||o), is defined
as

D(pllo) = Tr{p(log p — log o)].

Note that if [p, o] = 0, this reduces to the classical relative entropy. Just like in the classical
case, D(p|lo) > 0. From this, we get that

o S(p)<d
e I(A;B) >0
e S(A) > S(A|B)
We also have a Quantum Pinsker’s Inequality.

Theorem 6.2.1. 1

D > _——||lp—ol?

(pllo) > 52 llp — ol
Now for asymmetric hypothesis testing. Our distributions now will be two quantum states, p
and o, and the test will be a set of measurement operators {M, I — M} where an outcome of M
means we say the state is p, and an outcome of I — M means we say the state is 0. We now want

to find
B¢ =min {Tr [Mc®"] | TtMp®" > 1 — €} .
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Theorem 6.2.2 (Quantum Chernoff-Stein Theorem).

.o —1 n
Jim —=log 5¢ = D(pl|0).

Before looking at the proof, we will examine the case when p and o are pure and D(pl||o) = oo,
i.e. supp(p) € supp(o). Let p = [¢)(¢] and o = |¢)(¢|. The measurement that achieves the desired
rate is M = I — B®" where A = |¢)(¢*|, and B = I — A. (A result of M is saying that you
measured |¢*) at least once).

Then

Tr(Mo®") =0

while Tr(Mp®") — 1 as n — oo (in every register you get some probability of |¢1), so as n — oo

you are increasing your chances)
We will now prove the theorem.

Proof. We want an M such that Tr(p"M) > a and Tr(¢" M) < e ™%, The idea will be to construct
something similar to the LRT, but we will have to be careful about eigenbases.

Let p = Zz Tac‘az><a$‘ and o = Zx 3$‘5z><5w’
Recall the definition of a typical projector:

I s = Z |atzn ) {Qtan .

L Y0 log ra, +Tr(plog p)| <6

Next, define
Hzna,é = Z |Ban ) (Ban]-

z:| & 300 log sz —Tr(plog )| <6
We note that both of the subspaces defined by these projectors are typical under p, i.e.,
Tr(p"II} 5) = 1—e and Tr(p® 117}, 5) > 1 —e. We also have that [II] 5, p*"] = 0 and [II}, 5, 0®"] =
0.
If we sandwich p®" between the typical projectors, we cut off the ”atypical” eigenvalues:
e*ﬂ(S(p)Jré)Hg’(s < HZ,&P@WHZL,& < e*n(S(p)*é)Hzé'

Similarly, if you do the conditional projection, it squishes the eigenvalues of ¢ into the following
range:
Tr(plogo)—6 Tr(plogo)+d
| T 1 T | AR | A (6.6)

(Note that from here on we will drop the § and n on the typical projectors).
To get some intuition for equation 6.6, suppose you measure logo = " _logs,[, on p. Then

Pr[log s;] = Tr[pfBa],

and the expectation is Trplogo. If you do this n times, the law of large numbers says that the
average will approach the expectation.
We will first show achievability. Our measurement will be the product of both projectors - first
measure {I1,,,, I — 1, }, and if you get the positive outcome II,,, then measure {II,, I —II,}.
More rigorously, define
M = 11611 o

Then
Tr (p*" M) = Tr (T,Iy 0 p " T 01T, )
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We need to show that the probability of p accepting is large. As we saw above, the probability
of p accepting for each individual measurement is large. To show the combination works, we can
use the Gentle Measurement lemma, which says that the state after accepting Il is still very
close to p:

||p®n - HpHO'p®an||0'||l < 2\/E
We then see that
1
Tr(TL, (p°" = TLpj0 0" Tp0)) < 5l16%" = g™ Myjpo |11 < Ve
from which it follows that

Tr(HpHpHop(@anHUHP) > Tr(pr®n) - \/E >1l—e— \/E

So we have now showed that type one error is small enough, and now we need to bound type
two error. Consider that

Tr(Mo®") = Tr (TL,I1, 0" T, (6.7)

< Tr (MM os ooy, ) (6.8)

< US()+8) n(Tx(plog o) +9) (6.9)

— o~ (D(pllo)—26) (6.10)

where we used the operator inequality from equation 6.6, the fact that 1I,, < I, and that

Tr(Il,) = |Tp| < "5+,

We have now shown achievability. Next, we will use similar arguments to show the converse,
i.e., you cannot do better than the rate D(pl||o).

Suppose Tr (Mp®") > . Our goal is to show that Tr (Mc®") is "not too small”. We will use
the following operator inequalities:

o®" > 1, " (TP log o) =) (6.11)
I1,p° I, < e "S-y (6.12)

Now
Tr (Mo®") > Tr (1L, M) e"(Tr(Plogo)=0) (6.13)
> (o — V/2€)e D (pllo)=20) (6.14)

and

Tr (0 M) 2 Tr () ML 511, (6.15)
> Tr (ML p® L e~ 5010} (6.16)

We can again use Gentle Measurement to show that Hp||o'p®anH0' is close to p®", and using a
similar argument as before, we get that

Ty (MHpHap®anHo) Z o — \/i
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Putting it all together, we find
Tr (Mo®") > (o — v/2e)e PCll)=0)

which completes the proof.
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