
8.372 Quantum Information Science III Fall 2024

Lecture 6: September 24, 2024

Scribe: John Blue Quantum Relative Entropy

6.1 Chernoff-Stein Lemma

Let’s start by proving the Chernoff-Stein Lemma from the last lecture. The setup: we have a string
xn, which was sampled either from pn or qn, and we want to know which. To do this, we will look
at the likelihood ratio test (LRT). To perform this test, we first compute

W (xn) = log
pn(xn)

qn(xn)
. (6.1)

Note that W is a random variable, and that

• Exn∼pn [W ] = nD(p||q)

• Exn∼qn [W ] = −nD(q||p)

Then, to make the decision, we define some value T such that if W ≥ T , we guess pn, and if
W < T , we guess qn. Let A = {xn|W (xn) ≥ T} be the ”acceptance region”.

We’re interested in asymmetric hypothesis testing: we need pn(A) ≥ 1− ϵ (i.e. the probability
that we guess q when it was actually p should be less than ϵ), and then qn(A) ≤ e−nR for some R
(the probability that we guess p when it was actually q should grow exponentially small with n).

To decide where to set T , observe that if you set the threshold above nD(p||q), then (in the
limit of large sample sizes), we will never guess p. On the other hand, if we set the threshold below
−nD(q||p), we will never guess q. This suggests we should set T somewhere inside this range. Since
we want to minimize qn(A), we’ll pick T to be closer to this upper bound: T = n(D(p||q)− δ).

We will first show that this T achieves the desired bound for pn(A). Consider that

pn(A) = Prxn∼pn

[
log

pn(xn)

qn(xn)
> nD(p||q)

]
(6.2)

= Prxn∼pn

[
D(p||q)− 1

n

n∑
i=1

W [xi] < δ

]
(6.3)

Since Ex∼p[W [x]] = D(p||q), and each of the xi are independent and identically drawn from the
source, by the law of large numbers, this quantity approaches 1 as n goes to infinity. Thus, for any
ϵ and δ we can take n large enough that pn(A) ≥ 1− ϵ.

Now to show that qn(A) is small. If xn ∈ A, then qn(xn) ≤ e−T pn(xn). Then,

qn(A) ≤ e−T pn(A) (6.4)

≤ e−T (6.5)

so R = D(p||q)− δ (for any δ > 0).
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6.1.1 Multiple hypothesis testing

We briefly mention another form of hypothesis testing: multiple hypothesis testing. Here, we have
Q ⊆ ∆d = {prob dists on [d]}. Now, we want to distinguish between the two cases xn ∼ pn or
qn for some q ∈ Q. Intuitively, it makes sense that distinguishing p from Q should be at least as
hard as distinguishing p from q∗, where q∗ is the distribution in Q closest to p (see figure 6.1).
It turns out that it is actually equally as hard - you can distinguish with the exponential rate

Figure 6.1: An example of multiple hypothesis testing. Given a sample xn, we want to distinguish
between two cases, xn ∼ pn, or xn ∼ qn where q ∈ Q, a subset of the probability simplex. Here, q∗

is the point in Q closest to p.

R = minq∈QD(p||q).

6.2 Quantum Relative Entropy and Quantum Chernoff-Stein

We will now turn to the quantum analogue of hypothesis testing. First, we define the quantum
relative entropy.

Definition 1 (Quantum Relative Entropy). The quantum relative entropy, D(ρ||σ), is defined as

D(ρ||σ) = Tr[ρ(log ρ− log σ)].

Note that if [ρ, σ] = 0, this reduces to the classical relative entropy. Just like in the classical
case, D(ρ||σ) ≥ 0. From this, we get that

• S(ρ) ≤ d

• I(A;B) ≥ 0

• S(A) ≥ S(A|B)

We also have a Quantum Pinsker’s Inequality.

Theorem 1.

D(ρ||σ) ≥ 1

2 ln 2
||ρ− σ||21.

Now for asymmetric hypothesis testing. Our distributions now will be two quantum states, ρ
and σ, and the test will be a set of measurement operators {M, I −M} where an outcome of M
means we say the state is ρ, and an outcome of I −M means we say the state is σ. We now want
to find

βnϵ = min
{
Tr

[
Mσ⊗n

]
| TrMρ⊗n ≥ 1− ϵ

}
.

Theorem 2 (Quantum Chernoff-Stein Theorem).

lim
n→∞

−1

n
log βnϵ = D(ρ||σ).
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Before looking at the proof, we will examine the case when ρ and σ are pure and D(ρ||σ) = ∞,
i.e. supp(ρ) ⊈ supp(σ). Let ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ|. The measurement that achieves the desired
rate is M = I − B⊗n, where A = |ϕ⊥⟩⟨ϕ⊥|, and B = I − A. (A result of M is saying that you
measured |ϕ⊥⟩ at least once).

Then
Tr(Mσ⊗n) = 0

while Tr(Mρ⊗n) → 1 as n → ∞ (in every register you get some probability of |ϕ⊥⟩, so as n → ∞
you are increasing your chances)

We will now prove the theorem.

Proof. We want anM such that Tr(ρnM) ≥ α and Tr(σnM) ≤ e−nR. The idea will be to construct
something similar to the LRT, but we will have to be careful about eigenbases.

Let ρ =
∑

x rx|αx⟩⟨αx| and σ =
∑

x sx|βx⟩⟨βx|.
Recall the definition of a typical projector:

Πn
p,δ =

∑
xn:| 1

n

∑n
i=1 log rxi+Tr(ρ log ρ)|≤δ

|αxn⟩⟨αxn |.

Next, define

Πn
ρ||σ,δ =

∑
xn:| 1

n

∑n
i=1 log sxi−Tr(ρ log σ)|≤δ

|βxn⟩⟨βxn |.

We note that both of the subspaces defined by these projectors are typical under ρ, i.e.,
Tr(ρnΠn

p,δ) ≥ 1−ϵ and Tr(ρ⊗nΠn
ρ||σ,δ) ≥ 1−ϵ. We also have that [Πn

ρ,δ, ρ
⊗n] = 0 and [Πn

ρ||σ,δ, σ
⊗n] =

0.
If we sandwich ρ⊗n between the typical projectors, we cut off the ”atypical” eigenvalues:

e−n(S(ρ)+δ)Πn
p,δ ≤ Πn

ρ,δρ
⊗nΠn

ρ,δ ≤ e−n(S(ρ)−δ)Πn
ρ,δ.

Similarly, if you do the conditional projection, it squishes the eigenvalues of σ into the following
range:

en(Tr(ρ log σ)−δ)Πρ||σ ≤ Πρ||σσ
nΠρ||σ ≤ en(Tr(ρ log σ)+δ)Πρ||σ. (6.6)

(Note that from here on we will drop the δ and n on the typical projectors).
To get some intuition for equation 6.6, suppose you measure log σ =

∑
x log sxβx on ρ. Then

Pr[log sx] = Tr[ρβx],

and the expectation is Trρ log σ. If you do this n times, the law of large numbers says that the
average will approach the expectation.

We will first show achievability. Our measurement will be the product of both projectors - first
measure {Πρ||σ, I −Πρ||σ}, and if you get the positive outcome Πρ||σ, then measure {Πρ, I −Πρ}.

More rigorously, define
M = Πρ||σΠρΠρ||σ.

Then
Tr

(
ρ⊗nM

)
= Tr

(
ΠρΠρ||σρ

⊗nΠρ||σΠρ

)
.

We need to show that the probability of ρ accepting is large. As we saw above, the probability
of ρ accepting for each individual measurement is large. To show the combination works, we can
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use the Gentle Measurement lemma, which says that the state after accepting Πρ||σ is still very
close to ρ:

||ρ⊗n −Πρ||σρ
⊗nΠρ||σ||1 ≤ 2

√
ϵ.

We then see that

Tr(Πρ(ρ
⊗n −Πρ||σρ

⊗nΠρ||σ)) ≤
1

2
||ρ⊗n −Πρ||σρ

⊗nΠρ||σ||1 ≤
√
ϵ

from which it follows that

Tr(ΠρΠρ||σρ
⊗nΠρ||σΠρ) ≥ Tr(Πρρ

⊗n)−
√
ϵ ≥ 1− ϵ−

√
ϵ.

So we have now showed that type one error is small enough, and now we need to bound type
two error. Consider that

Tr(Mσ⊗n) = Tr
(
ΠρΠρ||σσ

⊗nΠρ||σ
)

(6.7)

≤ Tr
(
Πρe

n(Tr(ρ log σ)+δ)Πρ||σ

)
(6.8)

≤ en(S(ρ)+δ)en(Tr(ρ log σ)+δ) (6.9)

= e−n(D(ρ||σ)−2δ) (6.10)

where we used the operator inequality from equation 6.6, the fact that Πρ||σ ≤ I, and that

Tr(Πρ) = |Tp| ≤ en(S(ρ)+δ).
We have now shown achievability. Next, we will use similar arguments to show the converse,

i.e., you cannot do better than the rate D(ρ||σ).
Suppose Tr (Mρ⊗n) ≥ α. Our goal is to show that Tr (Mσ⊗n) is ”not too small”. We will use

the following operator inequalities:

σ⊗n ≥ Πρ||σe
n(Tr(ρ log σ)−δ) (6.11)

Πρρ
⊗nΠρ ≤ e−n(S(ρ)−δ)Πρ. (6.12)

Now

Tr
(
Mσ⊗n

)
≥ Tr

(
Πρ||σM

)
en(Tr(ρ log σ)−δ) (6.13)

≥ (α−
√
2ϵ)e−n(D(ρ||σ)−2δ) (6.14)

and

Tr
(
Πρ||σM

)
≥ Tr

(
Πρ||σMΠρ||σΠρ

)
(6.15)

≥ Tr
(
MΠρ||σρ

⊗nΠρ||σe
−n(S(ρ)−δ)

)
. (6.16)

We can again use Gentle Measurement to show that Πρ||σρ
⊗nΠρ||σ is close to ρ⊗n, and using a

similar argument as before, we get that

Tr
(
MΠρ||σρ

⊗nΠρ||σ
)
≥ α−

√
2ϵ.

Putting it all together, we find

Tr
(
Mσ⊗n

)
≥ (α−

√
2ϵ)e−n(D(ρ||σ)−δ) (6.17)

which completes the proof.
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